Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Signal Transduction and Cytokines

Janus kinase 2 (V617F) mutation status, signal transducer and activator of transcription-3 phosphorylation and impaired neutrophil apoptosis in myelofibrosis with myeloid metaplasia

Abstract

An activating point mutation in Janus kinase 2 (JAK2 V617F) was recently identified in myelofibrosis with myeloid metaplasia (MMM). To further elucidate the pathogenic significance, we examined the JAK2 mutation burden, phosphorylation of JAK2 substrates and neutrophil apoptotic resistance. Immunoblotting revealed phosphorylation of signal transducer and activator of transcription-3 (STAT3) in all four JAK2 with high V617F mutant allele burden and seven of eight with intermediate mutant allele burden, but only one of eight with wild-type JAK2 (P<0.001). In contrast, STAT5 phosphorylation was undetectable in patient MMM neutrophils; and phosphorylation of Akt and extracellular signal-regulated kinases (ERKs) failed to correlate with JAK2 mutation status. Apoptosis was lower in MMM neutrophils (median 41% apoptotic cells, n=50) compared to controls (median 66%, n=9) or other myeloproliferative disorder patients (median 53%, n=11; P=0.002). Apoptotic resistance in MMM correlated with anemia (P=0.01) and the JAK2-V617F (P=0.01). Indeed, apoptotic resistance was greatest in MMM neutrophils with high mutant allele burden (median 22% apoptosis, n=5) than with intermediate burden (median 39%, n=23) or wild-type JAK2 (median 47%, n=22; P=0.008). These results suggest that mutant JAK2 contributes to MMM pathogenesis by constitutively phosphorylating STAT3 and diminishing myeloid cell apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 1
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Tefferi A . Myelofibrosis with myeloid metaplasia. N Engl J Med 2000; 342: 1255–1265.

    Article  CAS  PubMed  Google Scholar 

  2. Mesa RA . Myelofibrosis with myeloid metaplasia: therapeutic options in 2003. Curr Hematol Rep 2003; 2: 264–270.

    PubMed  Google Scholar 

  3. Reilly JT . Pathogenesis of idiopathic myelofibrosis: present status and future directions [Review] [114 refs]. Br J Haematol 1994; 88: 1–8.

    Article  CAS  PubMed  Google Scholar 

  4. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  5. Levine RL, Wadleigh M, Cools J . Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myelofibrosis with myeloid metaplasia. Cancer Cell 2005; 7: 387–397.

    Article  CAS  PubMed  Google Scholar 

  6. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  PubMed  Google Scholar 

  7. Schindler CW . JAK-STAT signaling in human disease. J Clin Invest 2002; 109: 1133–1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aaronson DS, Horvath CM . A road map for those who don't know JAK-STAT. Science 2002; 296: 1653–1655.

    Article  CAS  PubMed  Google Scholar 

  9. Hengartner MO . The biochemistry of apoptosis. Nature 2000; 407: 770–776.

    Article  CAS  PubMed  Google Scholar 

  10. White MK, McCubrey JA . Suppression of apoptosis: role in cell growth and neoplasia. Leukemia 2001; 15: 1011–1021.

    Article  CAS  PubMed  Google Scholar 

  11. Savill JS, Wyllie AH, Henson JE, Walport MJ, Henson PM, Haslett C . Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest 1989; 83: 865–875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Muta K, Krantz SB . Apoptosis of human erythroid colony-forming cells is decreased by stem cell factor and insulin-like growth factor I as well as erythropoietin. J Cell Physiol 1993; 156: 264–271.

    Article  CAS  PubMed  Google Scholar 

  13. Buettner R, Mora LB, Jove R . Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 2002; 8: 945–954.

    CAS  PubMed  Google Scholar 

  14. Alvarez JV, Frank DA . Genome-wide analysis of STAT target genes: elucidating the mechanism of STAT-mediated oncogenesis. Cancer Biol Ther 2004; 3: 1045–1050.

    Article  CAS  PubMed  Google Scholar 

  15. Epling-Burnette PK, Zhong B, Bai F, Jiang K, Bailey RD, Garcia R et al. Cooperative regulation of Mcl-1 by Janus kinase/stat and phosphatidylinositol 3-kinase contribute to granulocyte–macrophage colony-stimulating factor-delayed apoptosis in human neutrophils. J Immunol 2001; 166: 7486–7495.

    Article  CAS  PubMed  Google Scholar 

  16. Horita M, Andreu EJ, Benito A, Arbona C, Sanz C, Benet I et al. Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med 2000; 191: 977–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aichberger KJ, Mayerhofer M, Krauth MT, Skvara H, Florian S, Sonneck K et al. Identification of mcl-1 as a BCR/ABL-dependent target in chronic myeloid leukemia (CML): evidence for cooperative antileukemic effects of imatinib and mcl-1 antisense oligonucleotides. Blood 2005; 105: 3303–3311.

    Article  CAS  PubMed  Google Scholar 

  18. Silva M, Richard C, Benito A, Sanz C, Olalla I, Fernandez-Luna JL . Expression of Bcl-x in erythroid precursors from patients with polycythemia vera [see comments]. N Engl J Med 1998; 338: 564–571.

    Article  CAS  PubMed  Google Scholar 

  19. Colovic MD, Wiernik PH, Jankovic GM, Vidovic AD, Janosevic S, Basara NM . Circulating haemopoietic progenitor cells in primary and secondary myelofibrosis: relation to collagen and reticulin fibrosis. Eur J Haematol 1999; 62: 155–159.

    Article  CAS  PubMed  Google Scholar 

  20. English D, Andersen BR . Single-step separation of red blood cells. Granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll–Hypaque. J Immunol Methods 1974; 5: 249–252.

    Article  CAS  PubMed  Google Scholar 

  21. Mow BM, Chandra J, Svingen PA, Hallgren CG, Weisberg E, Kottke TJ et al. Effects of the Bcr/abl kinase inhibitors STI571 and adaphostin (NSC 680410) on chronic myelogenous leukemia cells in vitro. Blood 2002; 99: 664–671.

    Article  CAS  PubMed  Google Scholar 

  22. Reeder TL, Bailey RJ, Dewald GW, Tefferi A . Both B and T lymphocytes may be clonally involved in myelofibrosis with myeloid metaplasia. Blood 2003; 101: 1981–1983.

    Article  CAS  PubMed  Google Scholar 

  23. Kaufmann SH, Svingen PA, Gore SD, Armstrong DK, Cheng YC, Rowinsky EK . Altered formation of topotecan-stabilized topoisomerase I-DNA adducts in human leukemia cells. Blood 1997; 89: 2098–2104.

    CAS  PubMed  Google Scholar 

  24. Yamashita K, Takahashi A, Kobayashi S, Hirata H, Mesner Jr PW, Kaufmann SH et al. Caspases mediate tumor necrosis factor-alpha-induced neutrophil apoptosis and downregulation of reactive oxygen production. Blood 1999; 93: 674–685.

    CAS  PubMed  Google Scholar 

  25. Homburg CH, de Haas M, von dem Borne AE, Verhoeven AJ, Reutelingsperger CP, Roos D . Human neutrophils lose their surface Fc gamma RIII and acquire Annexin V binding sites during apoptosis in vitro. Blood 1995; 85: 532–540.

    CAS  PubMed  Google Scholar 

  26. Kobayashi S, Takahashi A, Yamashita K, Takeoka T, Ohtsuki T, Suzuki Y et al. Calpain-mediated XIAP degradation in neutrophil apoptosis and its impairment in chronic neutrophilic leukemia. J Biol Chem 2002; 277: 33968–33977.

    Article  CAS  PubMed  Google Scholar 

  27. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD et al. Measurement of protein using bicinchoninic acid. Anal Biochem 1985; 150: 76–85.

    Article  CAS  PubMed  Google Scholar 

  28. Kaufmann SH . Reutilization of immunoblots after chemiluminescent detection. Anal Biochem 2001; 296: 283–286.

    Article  CAS  PubMed  Google Scholar 

  29. Al-Shami A, Mahanna W, Naccache PH . Granulocyte–macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Selective activation of Jak2, Stat3, and Stat5b. J Biol Chem 1998; 273: 1058–1063.

    Article  CAS  PubMed  Google Scholar 

  30. Yagisawa M, Saeki K, Okuma E, Kitamura T, Kitagawa S, Hirai H et al. Signal transduction pathways in normal human monocytes stimulated by cytokines and mediators: comparative study with normal human neutrophils or transformed cells and the putative roles in functionality and cell biology. Exp Hematol 1999; 27: 1063–1076.

    Article  CAS  PubMed  Google Scholar 

  31. McClure R, Mai M, Lasho T . Validation of two clinically useful assays for evaluation of JAK2 V617F mutation in chronic myeloproliferative disorders. Leukemia 2006; 20: 168–171.

    Article  CAS  PubMed  Google Scholar 

  32. Dupriez B, Morel P, Demory J, Lai J, Simon M, Plantier I et al. Prognostic factors in agnogenic myeloid metaplasia: a report on 195 cases with a new scoring system [see comments]. Blood 1996; 88: 1013–1018.

    CAS  PubMed  Google Scholar 

  33. de Groot RP, Coffer PJ, Koenderman L . Regulation of proliferation, differentiation and survival by the IL-3/IL-5/GM-CSF receptor family. Cell Signal 1998; 10: 619–628.

    Article  CAS  PubMed  Google Scholar 

  34. McCubrey JA, May WS, Duronio V, Mufson A . Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 2000; 14: 9–21.

    Article  CAS  PubMed  Google Scholar 

  35. Um M, Lodish HF . Antiapoptotic effects of erythropoietin in differentiated neuroblastoma SH-SY5Y cells require activation of both the STAT5 and AKT signaling pathways. J Biol Chem 2006; 281: 5648–5656.

    Article  CAS  PubMed  Google Scholar 

  36. Akgul C, Moulding DA, Edwards SW . Molecular control of neutrophil apoptosis. FEBS Lett 2001; 487: 318–322.

    Article  CAS  PubMed  Google Scholar 

  37. Juvonen E, Ikkala E, Oksanen K, Ruutu T . Megakaryocyte and erythroid colony formation in essential thrombocythaemia and reactive thrombocytosis: diagnostic value and correlation to complications. Br J Haematol 1993; 83: 192–197.

    Article  CAS  PubMed  Google Scholar 

  38. Prchal JF, Axelrad AA . Letter: bone-marrow responses in polycythemia vera. N Engl J Med 1974; 290: 1382.

    CAS  PubMed  Google Scholar 

  39. Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ . Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 1994; 83: 2038–2044.

    CAS  PubMed  Google Scholar 

  40. McGahon A, Bissonnette R, Schmitt M, Cotter KM, Green DR, Cotter TG . BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 1994; 83: 1179–1187.

    CAS  PubMed  Google Scholar 

  41. Carlesso N, Frank DA, Griffin JD . Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl. J Exp Med 1996; 183: 811–820.

    Article  CAS  PubMed  Google Scholar 

  42. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL . Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 1996; 13: 247–254.

    CAS  PubMed  Google Scholar 

  43. Ilaria Jr RL, Van Etten RA . P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 1996; 271: 31704–31710.

    Article  CAS  PubMed  Google Scholar 

  44. Lin TS, Mahajan S, Frank DA . STAT signaling in the pathogenesis and treatment of leukemias. Oncogene 2000; 19: 2496–2504.

    Article  CAS  PubMed  Google Scholar 

  45. Benekli M, Baer MR, Baumann H, Wetzler M . Signal transducer and activator of transcription proteins in leukemias. Blood 2003; 101: 2940–2954.

    Article  CAS  PubMed  Google Scholar 

  46. Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 2001; 107: 351–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10: 105–115.

    Article  CAS  PubMed  Google Scholar 

  48. Darnell Jr JE . Transcription factors as targets for cancer therapy. Nat Rev Cancer 2002; 2: 740–749.

    Article  CAS  PubMed  Google Scholar 

  49. Sordella R, Bell DW, Haber DA, Settleman J . Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science 2004; 305: 1163–1167.

    Article  CAS  PubMed  Google Scholar 

  50. Boucher MJ, Morisset J, Vachon PH, Reed JC, Laine J, Rivard N . MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biochem 2000; 79: 355–369.

    Article  CAS  PubMed  Google Scholar 

  51. Kobayashi S, Werneburg NW, Bronk SF, Kaufmann SH, Gores GJ . Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. Gastroenterology 2005; 128: 2054–2065.

    Article  CAS  PubMed  Google Scholar 

  52. Alvarez JV, Febbo PG, Ramaswamy S, Loda M, Richardson A, Frank DA . Identification of a genetic signature of activated signal transducer and activator of transcription 3 in human tumors. Cancer Res 2005; 65: 5054–5062.

    Article  CAS  PubMed  Google Scholar 

  53. Kralovics R, Teo SS, Buser AS, Brutsche M, Tiedt R, Tichelli A et al. Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood 2005; 106: 3374–3376.

    Article  CAS  PubMed  Google Scholar 

  54. Tefferi A, Lasho TL, Gilliland G . JAK2 mutations in myeloproliferative disorders. N Engl J Med 2005; 353: 1416–1417.

    Article  CAS  PubMed  Google Scholar 

  55. Darnell JE . Validating Stat3 in cancer therapy. Nat Med 2005; 11: 595–596.

    Article  CAS  PubMed  Google Scholar 

  56. Sun J, Blaskovich MA, Jove R, Livingston SK, Coppola D, Sebti SM . Cucurbitacin Q: a selective STAT3 activation inhibitor with potent antitumor activity. Oncogene 2005; 24: 3236–3245.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by R01 CA69008 (SHK) and K23 CA96780 (RAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Mesa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mesa, R., Tefferi, A., Lasho, T. et al. Janus kinase 2 (V617F) mutation status, signal transducer and activator of transcription-3 phosphorylation and impaired neutrophil apoptosis in myelofibrosis with myeloid metaplasia. Leukemia 20, 1800–1808 (2006). https://doi.org/10.1038/sj.leu.2404338

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404338

Keywords

This article is cited by

Search

Quick links