Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 16, 2006

Flow-cytometric immunophenotyping of normal and malignant lymphocytes

  • Tomasz Szczepański , Vincent H.J. van der Velden and Jacques J.M. van Dongen

Abstract

During the past two decades, flow-cytometric immunophenotyping of lymphocytes has evolved from a research technique into a routine laboratory diagnostic test. Extensive studies in healthy individuals resulted in detailed age-related reference values for different lymphocyte subpopulations in peripheral blood. This is an important tool for the diagnosis of hematological and immunological disorders. Similar, albeit less detailed, information is now available for other lymphoid organs, e.g., normal bone marrow, lymph nodes, tonsils, thymus and spleen. Flow-cytometric immunophenotyping forms the basis of modern classification of acute and chronic leukemias and is increasingly applied for initial diagnostic work-up of non-Hodgkin's lymphomas. Finally, with multiparameter flow cytometry, it is now possible to identify routinely and reliably low numbers of leukemia and lymphoma cells (minimal residual disease).

Clin Chem Lab Med 2006;44:775–96.


Corresponding author: Prof. J.J.M. van Dongen, MD, PhD, Department of Immunology, Erasmus MC, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands Phone: +31-10-4088094, Fax: +31-10-4089456,

References

1. Jennings CD, Foon KA. Recent advances in flow cytometry: application to the diagnosis of hematologic malignancy. Blood 1997; 90:2863–92.10.1182/blood.V90.8.2863Search in Google Scholar

2. Basso G, Buldini B, De Zen L, Orfao A. New methodologic approaches for immunophenotyping acute leukemias. Haematologica 2001; 86:675–92.Search in Google Scholar

3. Bain BJ, Barnett D, Linch D, Matutes E, Reilly JT. Revised guideline on immunophenotyping in acute leukaemias and chronic lymphoproliferative disorders. Clin Lab Haematol 2002; 24:1–13.10.1046/j.1365-2257.2002.00135.xSearch in Google Scholar

4. Weir EG, Cowan K, LeBeau P, Borowitz MJ. A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: implications for residual disease detection. Leukemia 1999; 13:558–67.10.1038/sj.leu.2401364Search in Google Scholar

5. Bigos M, Baumgarth N, Jager GC, Herman OC, Nozaki T, Stovel RT, et al. Nine-color eleven-parameter immunophenotyping using three laser flow cytometry. Cytometry 1999; 36:36–45.10.1002/(SICI)1097-0320(19990501)36:1<36::AID-CYTO5>3.0.CO;2-9Search in Google Scholar

6. Shah VO, Civin CI, Loken MR. Flow cytometric analysis of human bone marrow. IV. Differential quantitative expression of T-200 common leukocyte antigen during normal hemopoiesis. J Immunol 1988; 140:1861–7.10.4049/jimmunol.140.6.1861Search in Google Scholar

7. van Dongen JJ, Szczepański T, Adriaansen HJ. Immunobiology of leukemia. In: Henderson ES, Lister TA, Greaves MF, editors. Leukemia. Philadelphia, PA: WB Saunders, 2002:85–129.Search in Google Scholar

8. Mason D, Andre P, Bensussan A, Buckley C, Civin C, Clark E, et al. Reference: CD Antigens 2002. J Immunol 2002; 168:2083–6.10.4049/jimmunol.168.5.2083Search in Google Scholar

9. Zola H, Swart B, Nicholson I, Aasted B, Bensussan A, Boumsell L, et al. CD molecules 2005: human cell differentiation molecules. Blood 2005; 106:3123–6.10.1182/blood-2005-03-1338Search in Google Scholar

10. Escribano L, Ocqueteau M, Almeida J, Orfao A, San Miguel JF. Expression of the c-kit (CD117) molecule in normal and malignant hematopoiesis. Leuk Lymphoma 1998; 30:459–66.10.3109/10428199809057558Search in Google Scholar

11. Adriaansen HJ, Hooijkaas H, Kappers-Klunne MC, Hahlen K, van't Veer MB, van Dongen JJ. Double marker analysis for terminal deoxynucleotidyl transferase and myeloid antigens in acute nonlymphocytic leukemia patients and healthy subjects. Haematol Blood Transfus 1990; 33:41–9.10.1007/978-3-642-74643-7_7Search in Google Scholar

12. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ. Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 1997; 89:3104–12.10.1182/blood.V89.9.3104Search in Google Scholar

13. Baersch G, Baumann M, Ritter J, Jurgens H, Vormoor J. Expression of AC133 and CD117 on candidate normal stem cell populations in childhood B-cell precursor acute lymphoblastic leukaemia. Br J Haematol 1999; 107:572–80.10.1046/j.1365-2141.1999.01746.xSearch in Google Scholar

14. Craig W, Kay R, Cutler RL, Lansdorp PM. Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med 1993; 177:1331–42.10.1084/jem.177.5.1331Search in Google Scholar

15. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood 1997; 90:5002–12.10.1182/blood.V90.12.5002Search in Google Scholar

16. Foon KA, Todd RF. Immunologic classification of leukemia and lymphoma. Blood 1986; 68:1–31.Search in Google Scholar

17. van Dongen JJ, Adriaansen HJ, Hooijkaas H. Immunophenotyping of leukaemias and non-Hodgkin's lymphomas. Immunological markers and their CD codes. Neth J Med 1988; 33:298–314.Search in Google Scholar

18. Borst J, Brouns GS, de Vries E, Verschuren MC, Mason DY, van Dongen JJ. Antigen receptors on T and B lymphocytes: parallels in organization and function. Immunol Rev 1993; 132:49–84.10.1111/j.1600-065X.1993.tb00837.xSearch in Google Scholar

19. Dworzak MN, Fritsch G, Froschl G, Printz D, Gadner H. Four-color flow cytometric investigation of terminal deoxynucleotidyl transferase-positive lymphoid precursors in pediatric bone marrow: CD79a expression precedes CD19 in early B-cell ontogeny. Blood 1998; 92:3203–9.10.1182/blood.V92.9.3203Search in Google Scholar

20. Noordzij JG, de Bruin-Versteeg S, Comans-Bitter WM, Hartwig NG, Hendriks RW, de Groot R, et al. Composition of precursor B-cell compartment in bone marrow from patients with X-linked agammaglobulinemia compared with healthy children. Pediatr Res 2002; 51:159–68.10.1203/00006450-200202000-00007Search in Google Scholar

21. Tsuganezawa K, Kiyokawa N, Matsuo Y, Kitamura F, Toyama-Sorimachi N, Kuida K, et al. Flow cytometric diagnosis of the cell lineage and developmental stage of acute lymphoblastic leukemia by novel monoclonal antibodies specific to human pre-B-cell receptor. Blood 1998; 92:4317–24.10.1182/blood.V92.11.4317Search in Google Scholar

22. van Dongen JJ, Krissansen GW, Wolvers-Tettero IL, Comans-Bitter WM, Adriaansen HJ, Hooijkaas H, et al. Cytoplasmic expression of the CD3 antigen as a diagnostic marker for immature T-cell malignancies. Blood 1988; 71:603–12.10.1182/blood.V71.3.603.603Search in Google Scholar

23. van Dongen JJ, Comans-Bitter WM, Wolvers-Tettero IL, Borst J. Development of human T lymphocytes and their thymus dependency. Thymus 1990; 16:207–34.Search in Google Scholar

24. Castrop J, van Wichen D, Comans-Bitter WM, van de Wetering M, de Weger R, van Dongen JJ, et al. The human TCF-1 gene encodes a nuclear DNA-binding protein uniquely expressed in normal and neoplastic T-lineage lymphocytes. Blood 1995; 86:3050–9.10.1182/blood.V86.8.3050.3050Search in Google Scholar

25. van den Beemd MW, Boor PP, Van Lochem EG, Hop WC, Langerak AW, Wolvers-Tettero IL, et al. Flow cytometric analysis of the Vβ repertoire in healthy controls. Cytometry 2000; 40:336–45.10.1002/1097-0320(20000801)40:4<336::AID-CYTO9>3.0.CO;2-0Search in Google Scholar

26. Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH. The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 1986; 136:4480–6.10.4049/jimmunol.136.12.4480Search in Google Scholar

27. Moretta L, Moretta A. Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J 2004; 23:255–9.10.1038/sj.emboj.7600019Search in Google Scholar

28. Moretta A, Biassoni R, Bottino C, Mingari MC, Moretta L. Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis. Immunol Today 2000; 21:228–34.10.1016/S0167-5699(00)01596-6Search in Google Scholar

29. Moretta L, Moretta A. Killer immunoglobulin-like receptors. Curr Opin Immunol 2004; 16:626–33.10.1016/j.coi.2004.07.010Search in Google Scholar

30. Bisset LR, Lung TL, Kaelin M, Ludwig E, Dubs RW. Reference values for peripheral blood lymphocyte phenotypes applicable to the healthy adult population in Switzerland. Eur J Haematol 2004; 72:203–12.10.1046/j.0902-4441.2003.00199.xSearch in Google Scholar

31. Comans-Bitter WM, de Groot R, van den Beemd R, Neijens HJ, Hop WC, Groeneveld K, et al. Immunophenotyping of blood lymphocytes in childhood. Reference values for lymphocyte subpopulations. J Pediatr 1997; 130:388–93.10.1016/S0022-3476(97)70200-2Search in Google Scholar

32. Shearer WT, Rosenblatt HM, Gelman RS, Oyomopito R, Plaeger S, Stiehm ER, et al. Lymphocyte subsets in healthy children from birth through 18 years of age: the Pediatric AIDS Clinical Trials Group P1009 study. J Allergy Clin Immunol 2003; 112:973–80.10.1016/j.jaci.2003.07.003Search in Google Scholar

33. Youinou P, Jamin C, Lydyard PM. CD5 expression in human B-cell populations. Immunol Today 1999; 20:312–6.10.1016/S0167-5699(99)01476-0Search in Google Scholar

34. Agematsu K, Hokibara S, Nagumo H, Komiyama A. CD27: a memory B-cell marker. Immunol Today 2000; 21:204–6.10.1016/S0167-5699(00)01605-4Search in Google Scholar

35. Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+ CD25 high regulatory cells in human peripheral blood. J Immunol 2001; 167:1245–53.10.4049/jimmunol.167.3.1245Search in Google Scholar

36. Fehervari Z, Sakaguchi S. CD4+ Tregs and immune control. J Clin Invest 2004; 114:1209–17.10.1172/JCI200423395Search in Google Scholar

37. Ho LP, Urban BC, Thickett DR, Davies RJ, McMichael AJ. Deficiency of a subset of T-cells with immunoregulatory properties in sarcoidosis. Lancet 2005; 365:1062–72.10.1016/S0140-6736(05)71143-0Search in Google Scholar

38. Kronenberg M, Rudensky A. Regulation of immunity by self-reactive T cells. Nature 2005; 435:598–604.10.1038/nature03725Search in Google Scholar

39. Lima M, Almeida J, dos Anjos Teixeira M, Queiros ML, Justica B, Orfao A. The “ex vivo” patterns of CD2/CD7, CD57/CD11c, CD38/CD11b, CD45RA/CD45RO, and CD11a/HLA-DR expression identify acute/early and chronic/late NK-cell activation states. Blood Cells Mol Dis 2002; 28:181–90.10.1006/bcmd.2002.0506Search in Google Scholar

40. Rego EM, Garcia AB, Viana SR, Falcao RP. Age-related changes of lymphocyte subsets in normal bone marrow biopsies. Cytometry 1998; 34:22–9.10.1002/(SICI)1097-0320(19980215)34:1<22::AID-CYTO4>3.0.CO;2-GSearch in Google Scholar

41. van Lochem EG, van der Velden VH, Wind HK, te Marvelde JG, Westerdaal NA, van Dongen JJ. Immunophenotypic differentiation patterns of normal hematopoiesis in human bone marrow: reference patterns for age-related changes and disease-induced shifts. Cytometry 2004; 60B:1–13.10.1002/cyto.b.20008Search in Google Scholar

42. Battaglia A, Ferrandina G, Buzzonetti A, Malinconico P, Legge F, Salutari V, et al. Lymphocyte populations in human lymph nodes. Alterations in CD4+CD25+ T regulatory cell phenotype and T-cell receptor Vβ repertoire. Immunology 2003; 110:304–12.10.1046/j.1365-2567.2003.01742.xSearch in Google Scholar

43. Almasri NM, Iturraspe JA, Braylan RC. CD10 expression in follicular lymphoma and large cell lymphoma is different from that of reactive lymph node follicles. Arch Pathol Lab Med 1998; 122:539–44.Search in Google Scholar

44. Bergler W, Adam S, Gross HJ, Hormann K, Schwartz-Albiez R. Age-dependent altered proportions in sub-populations of tonsillar lymphocytes. Clin Exp Immunol 1999; 116:9–18.10.1046/j.1365-2249.1999.00850.xSearch in Google Scholar

45. Colovai AI, Giatzikis C, Ho EK, Farooqi M, Suciu-Foca N, Cattoretti G, et al. Flow cytometric analysis of normal and reactive spleen. Mod Pathol 2004; 17:918–27.10.1038/modpathol.3800141Search in Google Scholar

46. Weerkamp F, de Haas EF, Naber BA, Comans-Bitter WM, Bogers AJ, van Dongen JJ, et al. Age-related changes in the cellular composition of the thymus in children. J Allergy Clin Immunol 2005; 115:834–40.10.1016/j.jaci.2004.10.031Search in Google Scholar

47. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J, et al. The World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee meeting – Airlie House, Virginia, November 1997. J Clin Oncol 1999; 17:3835–49.10.1200/JCO.1999.17.12.3835Search in Google Scholar

48. Jaffe ES, Harris NL, Stein H, Vardiman JW, editors. World Health Organization classification of tumours. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press, 2001:352pp.Search in Google Scholar

49. van Wering ER, van Lochem EG, Leenders M, van der Sluijs-Gelling AJ, Wind H, Gratama JW, et al. Three-color flow cytometric analysis of mature and immature hematological malignancies. A guideline of the Dutch Foundation for Immunophenotyping of Hematological Malignancies (SIHON). J Biol Regul Homeost Agents 2004; 18:313–26.Search in Google Scholar

50. Basso G, Bernasconi P, Chianese R, Crovetti G, Garbaccio G, Iavarone A, et al. Monoclonal antibody panels for acute leukemia and myelodysplastic syndrome diagnosis. Results of a co-operative quality control group. J Biol Regul Homeost Agents 2001; 15:145–55.Search in Google Scholar

51. Borowitz MJ, Bray R, Gascoyne R, Melnick S, Parker JW, Picker L, et al. US-Canadian Consensus recommendations on the immunophenotypic analysis of hematologic neoplasia by flow cytometry: data analysis and interpretation. Cytometry 1997; 30:236–44.10.1002/(SICI)1097-0320(19971015)30:5<236::AID-CYTO4>3.0.CO;2-FSearch in Google Scholar

52. Ratei R, Karawajew L, Lacombe F, Jagoda K, Del Poeta G, Kraan J, et al. Normal lymphocytes from leukemic samples as an internal quality control for fluorescence intensity in immunophenotyping of acute leukemias. Cytometry B 2006; 70:1–9.10.1002/cyto.b.20075Search in Google Scholar

53. Szczepański T, van der Velden VH, van Dongen JJ. Classification systems for acute and chronic leukaemias. Best Pract Res Clin Haematol 2003; 16:561–82.10.1016/S1521-6926(03)00086-0Search in Google Scholar

54. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995; 9:1783–6.Search in Google Scholar

55. van der Burg M, Barendregt BH, van Wering ER, Langerak AW, Szczepański T, van Dongen JJ. The presence of somatic mutations in immunoglobulin genes of B-cell acute lymphoblastic leukemia (ALL-L3) supports assignment as Burkitt's leukemia-lymphoma rather than B-lineage ALL. Leukemia 2001; 15:1141–3.10.1038/sj.leu.2402152Search in Google Scholar PubMed

56. Hrusak O, Porwit-MacDonald A. Antigen expression patterns reflecting genotype of acute leukemias. Leukemia 2002; 16:1233–58.10.1038/sj.leu.2402504Search in Google Scholar PubMed

57. Borkhardt A, Wuchter C, Viehmann S, Pils S, Teigler-Schlegel A, Stanulla M, et al. Infant acute lymphoblastic leukemia – combined cytogenetic, immunophenotypical and molecular analysis of 77 cases. Leukemia 2002; 16:1685–90.10.1038/sj.leu.2402595Search in Google Scholar PubMed

58. Behm FG, Smith FO, Raimondi SC, Pui CH, Bernstein ID. Human homologue of the rat chondroitin sulfate proteoglycan, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t(4;11)(q21;q23) or t(11;19)(q23;p13) and MLL gene rearrangements. Blood 1996; 87:1134–9.10.1182/blood.V87.3.1134.bloodjournal8731134Search in Google Scholar

59. De Zen L, Bicciato S, te Kronnie G, Basso G. Computational analysis of flow-cytometry antigen expression profiles in childhood acute lymphoblastic leukemia: an MLL/AF4 identification. Leukemia 2003; 17:1557–65.10.1038/sj.leu.2403013Search in Google Scholar PubMed

60. Borowitz MJ, Hunger SP, Carroll AJ, Shuster JJ, Pullen DJ, Steuber CP, et al. Predictability of the t(1;19)p13) from surface antigen phenotype: implications for screening cases of childhood acute lymphoblastic leukemia for molecular analysis: a Pediatric Oncology Group study. Blood 1993; 82:1086–91.10.1182/blood.V82.4.1086.1086Search in Google Scholar

61. De Zen L, Orfao A, Cazzaniga G, Masiero L, Cocito MG, Spinelli M, et al. Quantitative multiparametric immunophenotyping in acute lymphoblastic leukemia: correlation with specific genotype. I. ETV6/AML1 ALLs identification. Leukemia 2000; 14:1225–31.10.1038/sj.leu.2401824Search in Google Scholar PubMed

62. Mori T, Sugita K, Suzuki T, Okazaki T, Manabe A, Hosoya R, et al. A novel monoclonal antibody, KOR-SA3544 which reacts to Philadelphia chromosome-positive acute lymphoblastic leukemia cells with high sensitivity. Leukemia 1995; 9:1233–9.Search in Google Scholar

63. Paietta E, Racevskis J, Neuberg D, Rowe JM, Goldstone AH, Wiernik PH. Expression of CD25 (interleukin-2 receptor alpha chain) in adult acute lymphoblastic leukemia predicts for the presence of BCR/ABL fusion transcripts: results of a preliminary laboratory analysis of ECOG/MRC Intergroup Study E2993. Eastern Cooperative Oncology Group/Medical Research Council. Leukemia 1997; 11:1887–90.10.1038/sj.leu.2400836Search in Google Scholar PubMed

64. Asnafi V, Beldjord K, Boulanger E, Comba B, Le Tutour P, Estienne MH, et al. Analysis of TCR, pT alpha, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. Blood 2003; 101:2693–703.10.1182/blood-2002-08-2438Search in Google Scholar

65. Langerak AW, Wolvers-Tettero IL, van den Beemd MW, van Wering ER, Ludwig W-D, Hählen K, et al. Immunophenotypic and immunogenotypic characteristics of TCRgd+ T cell acute lymphoblastic leukemia. Leukemia 1999; 13:206–14.10.1038/sj.leu.2401276Search in Google Scholar

66. Geisler CH, Larsen JK, Hansen NE, Hansen MM, Christensen BE, Lund B, et al. Prognostic importance of flow cytometric immunophenotyping of 540 consecutive patients with B-cell chronic lymphocytic leukemia. Blood 1991; 78:1795–802.10.1182/blood.V78.7.1795.1795Search in Google Scholar

67. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94:1848–54.10.1182/blood.V94.6.1848Search in Google Scholar

68. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M, et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348:1764–75.10.1056/NEJMoa023143Search in Google Scholar

69. Matutes E, Owusu-Ankomah K, Morilla R, Garcia Marco J, Houlihan A, Que TH, et al. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia 1994; 8:1640–5.Search in Google Scholar

70. Robbins BA, Ellison DJ, Spinosa JC, Carey CA, Lukes RJ, Poppema S, et al. Diagnostic application of two-color flow cytometry in 161 cases of hairy cell leukemia. Blood 1993; 82:1277–87.10.1182/blood.V82.4.1277.1277Search in Google Scholar

71. Stetler-Stevenson M. Flow cytometry in lymphoma diagnosis and prognosis: useful? Best Pract Res Clin Haematol 2003; 16:583–97.10.1016/S1521-6926(03)00068-9Search in Google Scholar

72. Dunphy CH. Contribution of flow cytometric immunophenotyping to the evaluation of tissues with suspected lymphoma? Cytometry 2000; 42:296–306.10.1002/1097-0320(20001015)42:5<296::AID-CYTO7>3.0.CO;2-XSearch in Google Scholar

73. Laane E, Tani E, Bjorklund E, Elmberger G, Everaus H, Skoog L, et al. Flow cytometric immunophenotyping including Bcl-2 detection on fine needle aspirates in the diagnosis of reactive lymphadenopathy and non-Hodgkin's lymphoma. Cytometry B Clin Cytom 2005; 64:34–42.10.1002/cyto.b.20043Search in Google Scholar

74. Argatoff LH, Connors JM, Klasa RJ, Horsman DE, Gascoyne RD. Mantle cell lymphoma: a clinicopathologic study of 80 cases. Blood 1997; 89:2067–78.10.1182/blood.V89.6.2067Search in Google Scholar

75. Tbakhi A, Edinger M, Myles J, Pohlman B, Tubbs RR. Flow cytometric immunophenotyping of non-Hodgkin's lymphomas and related disorders. Cytometry 1996; 25:113–24.10.1002/(SICI)1097-0320(19961001)25:2<113::AID-CYTO1>3.0.CO;2-ISearch in Google Scholar

76. De Leval L, Harris NL. Variability in immunophenotype in diffuse large B-cell lymphoma and its clinical relevance. Histopathology 2003; 43:509–28.10.1111/j.1365-2559.2003.01758.xSearch in Google Scholar

77. Kramer MH, Hermans J, Wijburg E, Philippo K, Geelen E, van Krieken JH, et al. Clinical relevance of BCL2, BCL6, and MYC rearrangements in diffuse large B-cell lymphoma. Blood 1998; 92:3152–62.10.1182/blood.V92.9.3152Search in Google Scholar

78. Akasaka T, Akasaka H, Ueda C, Yonetani N, Maesako Y, Shimizu A, et al. Molecular and clinical features of non-Burkitt's, diffuse large-cell lymphoma of B-cell type associated with the c-MYC/immunoglobulin heavy-chain fusion gene. J Clin Oncol 2000; 18:510–8.10.1200/JCO.2000.18.3.510Search in Google Scholar

79. Matutes E, Morilla R, Owusu-Ankomah K, Houlihan A, Catovsky D. The immunophenotype of splenic lymphoma with villous lymphocytes and its relevance to the differential diagnosis with other B-cell disorders. Blood 1994; 83:1558–62.10.1182/blood.V83.6.1558.1558Search in Google Scholar

80. San Miguel JF, Vidriales MB, Ocio E, Mateo G, Sanchez-Guijo F, Sanchez ML, et al. Immunophenotypic analysis of Waldenstrom's macroglobulinemia. Semin Oncol 2003; 30:187–95.10.1053/sonc.2003.50074Search in Google Scholar

81. Almeida J, Orfao A, Ocqueteau M, Mateo G, Corral M, Caballero MD, et al. High-sensitive immunophenotyping and DNA ploidy studies for the investigation of minimal residual disease in multiple myeloma. Br J Haematol 1999; 107:121–31.10.1046/j.1365-2141.1999.01685.xSearch in Google Scholar

82. Rawstron AC, Davies FE, DasGupta R, Ashcroft AJ, Patmore R, Drayson MT, et al. Flow cytometric disease monitoring in multiple myeloma: the relationship between normal and neoplastic plasma cells predicts outcome after transplantation. Blood 2002; 100:3095–100.10.1182/blood-2001-12-0297Search in Google Scholar

83. Brinkman K, van Dongen JJ, van Lom K, Groeneveld K, Misere JF, van der Heul C. Induction of clinical remission in T-large granular lymphocyte leukemia with cyclosporin A, monitored by use of immunophenotyping with Vβ antibodies. Leukemia 1998; 12:150–4.10.1038/sj.leu.2400907Search in Google Scholar

84. Langerak AW, van Den Beemd R, Wolvers-Tettero IL, Boor PP, van Lochem EG, Hooijkaas H, et al. Molecular and flow cytometric analysis of the Vβ repertoire for clonality assessment in mature TCRαβ T-cell proliferations. Blood 2001; 98:165–73.10.1182/blood.V98.1.165Search in Google Scholar

85. Langerak AW, Szczepański T, van der Burg M, Wolvers-Tettero IL, van Dongen JJ. Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia 1997; 11:2192–9.10.1038/sj.leu.2400887Search in Google Scholar PubMed

86. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17:2257–317.10.1038/sj.leu.2403202Search in Google Scholar PubMed

87. Haedicke W, Ho FC, Chott A, Moretta L, Rüdiger T, Ott G, et al. Expression of CD94/NKG2A and killer immunoglobulin-like receptors in NK cells and a subset of extranodal cytotoxic T-cell lymphomas. Blood 2000; 95:3628–30.10.1182/blood.V95.11.3628Search in Google Scholar

88. Morice WG, Kurtin PJ, Leibson PJ, Tefferi A, Hanson CA. Demonstration of aberrant T-cell and natural killer-cell antigen expression in all cases of granular lymphocytic leukaemia. Br J Haematol 2003; 120:1026–36.10.1046/j.1365-2141.2003.04201.xSearch in Google Scholar PubMed

89. Zambello R, Falco M, Della Chiesa M, Trentin L, Carollo D, Castriconi R, et al. Expression and function of KIR and natural cytotoxicity receptors in NK-type lymphoproliferative diseases of granular lymphocytes (LDGL). Blood 2003; 102:1797–805.10.1182/blood-2002-12-3898Search in Google Scholar PubMed

90. Matutes E, Brito-Babapulle V, Swansbury J, Ellis J, Morilla R, Dearden C, et al. Clinical and laboratory features of 78 cases of T-prolymphocytic leukemia. Blood 1991; 78:3269–74.10.1182/blood.V78.12.3269.3269Search in Google Scholar

91. Willemze R, Kerl H, Sterry W, Berti E, Cerroni L, Chimenti S, et al. EORTC classification for primary cutaneous lymphomas: a proposal from the Cutaneous Lymphoma Study Group of the European Organization for Research and Treatment of Cancer. Blood 1997; 90:354–71.Search in Google Scholar

92. Greer JP, Kinney MC, Loughran TP Jr. T cell and NK cell lymphoproliferative disorders. Hematology (Am Soc Hematol Educ Program) 2001;259–81.10.1182/asheducation-2001.1.259Search in Google Scholar PubMed

93. Semenzato G, Zambello R, Starkebaum G, Oshimi K, Loughran TP Jr. The lymphoproliferative disease of granular lymphocytes: updated criteria for diagnosis. Blood 1997; 89:256–60.10.1182/blood.V89.1.256Search in Google Scholar

94. Zambello R, Semenzato G. Large granular lymphocytosis. Haematologica 1998; 83:936–42.Search in Google Scholar

95. Ahmad E, Kingma DW, Jaffe ES, Schrager JA, Janik J, Wilson W, et al. Flow cytometric immunophenotypic profiles of mature gamma delta T-cell malignancies involving peripheral blood and bone marrow. Cytometry B Clin Cytom 2005; 67:6–12.10.1002/cyto.b.20063Search in Google Scholar PubMed

96. Sandberg Y, Almeida J, Gonzalez M, Lima M, Szczepański T, van Gastel-Mol EJ, et al. Clonal TCRgd+ large granular lymphocyte proliferations reflect the spectrum of normal TCRgd+ T-cells in peripheral blood. Leukemia 2006. In press.10.1038/sj.leu.2404112Search in Google Scholar PubMed

97. Breit TM, Wolvers-Tettero IL, van Dongen JJ. Unique selection determinant in polyclonal V delta 2-J delta 1 junctional regions of human peripheral gamma delta T lymphocytes. J Immunol 1994; 152:2860–4.10.4049/jimmunol.152.6.2860Search in Google Scholar

98. Mori KL, Egashira M, Oshimi K. Differentiation stage of natural killer cell-lineage lymphoproliferative disorders based on phenotypic analysis. Br J Haematol 2001; 115:225–8.10.1046/j.1365-2141.2001.03038.xSearch in Google Scholar

99. Cooke CB, Krenacs L, Stetler-Stevenson M, Greiner TC, Raffeld M, Kingma DW, et al. Hepatosplenic T-cell lymphoma: a distinct clinicopathologic entity of cytotoxic gamma delta T-cell origin. Blood 1996; 88:4265–74.10.1182/blood.V88.11.4265.bloodjournal88114265Search in Google Scholar

100. Szczepański T, Orfao A, van der Velden VH, San Miguel JF, van Dongen JJ. Minimal residual disease in leukaemia patients. Lancet Oncol 2001; 2:409–17.10.1016/S1470-2045(00)00418-6Search in Google Scholar

101. Campana D, Coustan-Smith E. Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry 1999; 38:139–52.10.1002/(SICI)1097-0320(19990815)38:4<139::AID-CYTO1>3.0.CO;2-HSearch in Google Scholar

102. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepański T, Gabert J, van Dongen JJ. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 2003; 17:1013–34.10.1038/sj.leu.2402922Search in Google Scholar

103. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, et al. Standardization and quality control studies of “real-time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe Against Cancer program. Leukemia 2003; 17:2318–57.10.1038/sj.leu.2403135Search in Google Scholar

104. Coustan-Smith E, Behm FG, Sanchez J, Boyett JM, Hancock ML, Raimondi SC, et al. Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet 1998; 351:550–4.10.1016/S0140-6736(97)10295-1Search in Google Scholar

105. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L, et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352:1731–8.10.1016/S0140-6736(98)04058-6Search in Google Scholar

106. Coustan-Smith E, Gajjar A, Hijiya N, Razzouk BI, Ribeiro RC, Rivera GK, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia 2004; 18:499–504.10.1038/sj.leu.2403283Search in Google Scholar

107. Dworzak MN, Froschl G, Printz D, Mann G, Potschger U, Muhlegger N, et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood 2002; 99:1952–8.10.1182/blood.V99.6.1952Search in Google Scholar

108. Bjorklund E, Mazur J, Soderhall S, Porwit-MacDonald A. Flow cytometric follow-up of minimal residual disease in bone marrow gives prognostic information in children with acute lymphoblastic leukemia. Leukemia 2003; 17:138–48.10.1038/sj.leu.2402736Search in Google Scholar PubMed

109. Vidriales MB, Perez JJ, Lopez-Berges MC, Gutierrez N, Ciudad J, Lucio P, et al. Minimal residual disease in adolescent (older than 14 years) and adult acute lymphoblastic leukemias: early immunophenotypic evaluation has high clinical value. Blood 2003; 101:4695–700.10.1182/blood-2002-08-2613Search in Google Scholar PubMed

110. Corradini P, Ladetto M, Pileri A, Tarella C. Clinical relevance of minimal residual disease monitoring in non-Hodgkin's lymphomas: a critical reappraisal of molecular strategies. Leukemia 1999; 13:1691–5.10.1038/sj.leu.2401559Search in Google Scholar PubMed

111. Bottcher S, Ritgen M, Pott C, Bruggemann M, Raff T, Stilgenbauer S, et al. Comparative analysis of minimal residual disease detection using four-color flow cytometry, consensus IgH-PCR, and quantitative IgH PCR in CLL after allogeneic and autologous stem cell transplantation. Leukemia 2004; 18:1637–45.10.1038/sj.leu.2403478Search in Google Scholar PubMed

112. Montserrat E. Treatment of chronic lymphocytic leukemia: achieving minimal residual disease-negative status as a goal. J Clin Oncol 2005; 23:2884–5.10.1200/JCO.2005.11.932Search in Google Scholar PubMed

113. Szczepański T, van Dongen JJ. Detection of minimal residual disease. In: Henderson ES, Lister TA, Greaves MF, editors. Leukemia. Philadelphia, PA: WB Saunders, 2002:249–83.Search in Google Scholar

114. van Dongen JJ, Breit TM, Adriaansen HJ, Beishuizen A, Hooijkaas H. Detection of minimal residual disease in acute leukemia by immunological marker analysis and polymerase chain reaction. Leukemia 1992; 6:47–59.Search in Google Scholar

115. Campana D, Pui CH. Detection of minimal residual disease in acute leukemia: methodologic advances and clinical significance. Blood 1995; 85:1416–34.10.1182/blood.V85.6.1416.bloodjournal8561416Search in Google Scholar

116. Campana D. Determination of minimal residual disease in leukaemia patients. Br J Haematol 2003; 121:823–38.10.1046/j.1365-2141.2003.04393.xSearch in Google Scholar PubMed

117. Van Lochem EG, Wiegers YM, van den Beemd R, Hahlen K, van Dongen JJ, Hooijkaas H. Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patients depends on the type of preceding chemotherapy. Leukemia 2000; 14:688–95.10.1038/sj.leu.2401749Search in Google Scholar PubMed

118. van Wering ER, van der Linden-Schrever BE, Szczepański T, Willemse MJ, Baars EA, van Wijngaarde-Schmitz HM, et al. Regenerating normal B-cell precursors during and after treatment of acute lymphoblastic leukaemia: implications for monitoring of minimal residual disease. Br J Haematol 2000; 110:139–46.10.1046/j.1365-2141.2000.02143.xSearch in Google Scholar PubMed

119. Chen JS, Coustan-Smith E, Suzuki T, Neale GA, Mihara K, Pui CH, et al. Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood 2001; 97:2115–20.10.1182/blood.V97.7.2115Search in Google Scholar

120. Lee RV, Braylan RC, Rimsza LM. CD58 expression decreases as nonmalignant B cells mature in bone marrow and is frequently overexpressed in adult and pediatric precursor B-cell acute lymphoblastic leukemia. Am J Clin Pathol 2005; 123:119–24.10.1309/X5VV6FKJQ6MUBLPXSearch in Google Scholar PubMed

121. Veltroni M, De Zen L, Sanzari MC, Maglia O, Dworzak MN, Ratei R, et al. Expression of CD58 in normal, regenerating and leukemic bone marrow B cells: implications for the detection of minimal residual disease in acute lymphocytic leukemia. Haematologica 2003; 88:1245–52.Search in Google Scholar

122. Lucio P, Parreira A, van den Beemd MW, van Lochem EG, van Wering ER, Baars E, et al. Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL. Leukemia 1999; 13:419–27.10.1038/sj.leu.2401279Search in Google Scholar PubMed

123. Ciudad J, San Miguel JF, Lopez-Berges MC, Garcia Marcos MA, Gonzalez M, Vazquez L, et al. Detection of abnormalities in B-cell differentiation pattern is a useful tool to predict relapse in precursor-B-ALL. Br J Haematol 1999; 104:695–705.10.1046/j.1365-2141.1999.01236.xSearch in Google Scholar PubMed

124. Dworzak MN, Fritsch G, Fleischer C, Printz D, Froschl G, Buchinger P, et al. Comparative phenotype mapping of normal vs. malignant pediatric B-lymphopoiesis unveils leukemia-associated aberrations. Exp Hematol 1998; 26:305–13.Search in Google Scholar

125. Ciudad J, San Miguel JF, Lopez-Berges MC, Vidriales B, Valverde B, Ocqueteau M, et al. Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol 1998; 16:3774–81.10.1200/JCO.1998.16.12.3774Search in Google Scholar PubMed

126. Griesinger F, Piró-Noack M, Kaib N, Falk M, Renziehausen A, Troff C, et al. Leukaemia-associated immunophenotypes (LIAP) are observed on 90% of adult and childhood acute lymphoblastic leukaemia: detection in remission marrow predicts outcome. Br J Haematol 1999; 105:241–55.10.1111/j.1365-2141.1999.01300.xSearch in Google Scholar

127. Borowitz MJ, Pullen DJ, Shuster JJ, Viswanatha D, Montgomery K, Willman CL, et al. Minimal residual disease detection in childhood precursor-B-cell acute lymphoblastic leukemia: relation to other risk factors. A Children's Oncology Group study. Leukemia 2003; 17:1566–72.10.1038/sj.leu.2403001Search in Google Scholar PubMed

128. Gaipa G, Basso G, Maglia O, Leoni V, Faini A, Cazzaniga G, et al. Drug-induced immunophenotypic modulation in childhood ALL: implications for minimal residual disease detection. Leukemia 2005; 19:49–56.10.1038/sj.leu.2403559Search in Google Scholar PubMed

129. van der Sluijs-Gelling AJ, van der Velden VH, Roeffen ET, Veerman AJ, van Wering ER. Immunophenotypic modulation in childhood precursor-B-ALL can be mimicked in vitro and is related to the induction of cell death. Leukemia 2005; 19:1845–7.10.1038/sj.leu.2403911Search in Google Scholar PubMed

130. Borowitz MJ, Pullen DJ, Winick N, Martin PL, Bowman WP, Camitta B. Comparison of diagnostic and relapse flow cytometry phenotypes in childhood acute lymphoblastic leukemia: implications for residual disease detection: a report from the children's oncology group. Cytometry B Clin Cytom 2005; 68:18–24.10.1002/cyto.b.20071Search in Google Scholar PubMed

131. van Wering ER, Beishuizen A, Roeffen ET, van der Linden-Schrever BE, Verhoeven MA, Hahlen K, et al. Immunophenotypic changes between diagnosis and relapse in childhood acute lymphoblastic leukemia. Leukemia 1995; 9:1523–33.Search in Google Scholar

132. van Dongen JJ, Szczepański T, de Bruijn MAC, Van den Beemd MW, de Bruin-Versteeg S, Wijkhuijs JM, et al. Detection of minimal residual disease in acute leukemia patients. Cytokines Mol Ther 1996; 2:121–33.Search in Google Scholar

133. Porwit-MacDonald A, Bjorklund E, Lucio P, van Lochem EG, Mazur J, Parreira A, et al. BIOMED-1 concerted action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL). Leukemia 2000; 14:816–25.10.1038/sj.leu.2401741Search in Google Scholar PubMed

134. Dworzak MN, Froschl G, Printz D, Zen LD, Gaipa G, Ratei R, et al. CD99 expression in T-lineage ALL: implications for flow cytometric detection of minimal residual disease. Leukemia 2004; 18:703–8.10.1038/sj.leu.2403303Search in Google Scholar PubMed

135. Cabezudo E, Matutes E, Ramrattan M, Morilla R, Catovsky D. Analysis of residual disease in chronic lymphocytic leukemia by flow cytometry. Leukemia 1997; 11:1909–14.10.1038/sj.leu.2400835Search in Google Scholar PubMed

136. Rawstron AC, Kennedy B, Evans PA, Davies FE, Richards SJ, Haynes AP, et al. Quantitation of minimal disease levels in chronic lymphocytic leukemia using a sensitive flow cytometric assay improves the prediction of outcome and can be used to optimize therapy. Blood 2001; 98:29–35.10.1182/blood.V98.1.29Search in Google Scholar

137. Sanchez ML, Almeida J, Vidriales B, Lopez-Berges MC, Garcia-Marcos MA, Moro MJ, et al. Incidence of phenotypic aberrations in a series of 467 patients with B chronic lymphoproliferative disorders: basis for the design of specific four-color stainings to be used for minimal residual disease investigation. Leukemia 2002; 16:1460–9.10.1038/sj.leu.2402584Search in Google Scholar PubMed

138. Hermine O, Haioun C, Lepage E, d'Agay MF, Briere J, Lavignac C, et al. Prognostic significance of bcl-2 protein expression in aggressive non-Hodgkin's lymphoma. Blood 1996; 87:265–72.10.1182/blood.V87.1.265.265Search in Google Scholar

Received: 2006-2-14
Accepted: 2006-3-17
Published Online: 2006-6-16
Published in Print: 2006-7-1

©2006 by Walter de Gruyter Berlin New York

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/CCLM.2006.146/html
Scroll to top button