A detailed analysis of chromosomal changes in heritable and non-heritable retinoblastoma

Hum Genet. 1985;70(4):291-301. doi: 10.1007/BF00295364.

Abstract

Full cytogenetic analysis of 27 different retinoblastoma tumors is presented. Gross aneuploidy of chromosome arms 6p and 1q were very common, being observed in 15/27 and 21/27 tumors, respectively. However, we found that chromosome 13 was rarely missing: only 3/27 had a detectable monosomy affecting 13q14. Monosomy of chromosome 13 by small deletion or rearrangement was also not observed in any of 12 retinoblastoma tumor lines analyzed detail at the 300-400 chromosome band level. A novel observation in retinoblastoma was the discovery of non-random translocations at three specific breakpoints, 14q32 (4/12), 17p12 (5/12), and 10q25 (3/12). Genomic rearrangements similar to those described involving C-myc in Burkitt lymphoma 14q+ cells could not be demonstrated in the four 14q+ retinoblastoma lines using molecular techniques, and a probe mapping to the site implicated to have an activating role in lymphoma. These data suggest that there is a target for rearrangement at 14q32 but it is not the same sequence used in some Burkitt lymphomas. Two other breakpoints (2p24 and 8q24) coincided with the mapped position of cellular oncogenes, but also failed to show a molecular rearrangement with the oncogene probes. The breakpoints, 10q25 and 17p12, are constitutional fragile sites which may predispose these regions to act as acceptors of translocations in malignant cells. One line had double minute chromosomes, and was the only one of 16 (6%) tested with the N-myc probe which had an amplification. Different tumors from single patients with multifocal heritable retinoblastoma showed independent karyotype evolution. Unilateral non-heritable tumors exhibited a high level of karyotype stability throughout both in vivo and in vitro growth. The various common patterns of aneuploidy and translocations probably confer an early selective advantage to malignant cells, rather than induce malignant transformation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aneuploidy
  • Chromosome Aberrations*
  • Chromosome Deletion
  • Chromosomes, Human, 13-15
  • Eye Neoplasms / genetics*
  • Female
  • Humans
  • Male
  • Neoplasms, Multiple Primary / genetics
  • Oncogenes
  • Retinoblastoma / genetics*
  • Translocation, Genetic