Article Text

Download PDFPDF

Pathophysiology of HIV related thrombocytopenia: an analysis of 41 patients.
  1. A Domínguez,
  2. G Gamallo,
  3. R Garcia,
  4. A Lopez-Pastor,
  5. J M Peña,
  6. J J Vazquez
  1. Department of Internal Medicine, La Paz Hospital, Madrid, Spain.


    AIM--To analyse the pathogenic mechanism of HIV related thrombocytopenia. METHODS--Forty one patients with thrombocytopenia and HIV-1 infection were investigated over two years. Anticardiolipin antibodies were measured using an enzyme linked immunosorbent assay and antiplatelet antibodies were measured using an immunocapture technique. Tests for VDRL, C3 and C4, antinuclear antibodies and rheumatoid factor were also carried out in all patients and 80 control subjects (HIV-1 positive but non-thrombocytopenic). Indiumoxine labelled platelets were transfused in 13 patients. P24 antigen were also measured in 12 bone marrow aspirates. RESULTS--Antiplatelet antibodies and circulating immune complexes were found exclusively in the thrombocytopenic group; values for antiplatelet antibodies and circulating immune complexes were both higher in homosexual and bisexual patients. Three kinds of pattern were observed using 111 In-labelled platelets: splenic (n = 10); hepatic (n = 2); and destruction of bone marrow in just one case. The two most influential factors in the sequestration pattern were antiplatelet antibodies in the splenic uptake and circulating immune complexes in the hepatic and marrow sequestration. All patients, except three, had decreased platelet recovery. In those patients with a CD4 lymphocyte count of less than 200 x 10(6) cells/l the recovery was clearly greater (53%) than in patients who had more than 200 x 10(6) /l (28%). Finally, in seven of the 12 patients who were chosen for immunohistochemical study, p24 antigen was detected in the megakaryocytes, verifying that HIV-1 infects such cells. CONCLUSIONS--The pathogenic mechanism of HIV related thrombocytopenia is probably multifaceted. Antiplatelet antibodies and circulating immune complexes would cause peripheral destruction in the spleen, liver, and bone marrow, in that order; and, on the other hand, there would be an ineffective immune thrombopoiesis and direct infection of the megakaryocytes which could cause a change in the function and maturity of these cells.

    Statistics from

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.