Article Text

Download PDFPDF

Endothelial nitric oxide synthase immunoreactivity in early gestation and in trophoblastic disease.
  1. I Ariel,
  2. A Hochberg,
  3. M Shochina
  1. Hadassah University Hospital and the Hebrew University-Hadassah Medical School, Jerusalem, Israel.


    AIMS: To study the localisation of the endothelial nitric oxide synthase (eNOS) in the normal placenta, with special emphasis on the implantation site in the first trimester of pregnancy, and in the different subtypes of trophoblastic cells in gestational trophoblastic disease. METHODS: The immunoperoxidase technique with an antibody directed against eNOS was applied to paraffin sections from first and second trimester placentas, placenta accreta, partial and complete hydatidiform moles, and choriocarcinoma. Immunoperoxidase staining for human placental lactogen (hPL) was performed on parallel sections. RESULTS: Prominent immunoreactivity for eNOS was found to be present in the intermediate trophoblastic cells of the cell columns of the anchoring villi and in trophoblastic cells at the implantation site. Staining was also present in the syncytiotrophoblast, most conspicuous at the apical cell border. In trophoblastic disease, proliferating large mononuclear cells, which were strongly positive for hPL, were found to be immunoreactive for eNOS. CONCLUSIONS: eNOS immunoreactivity is strongly positive in the extravillous trophoblastic cells and to a lesser extent in the syncytiotrophoblast. In the former it may play a role in implantation and vascular invasion. Cells with differentiation to intermediate trophoblast in complete hydatidiform mole and choriocarcinoma also show high levels of eNOS, which may be associated with the haematogenous mode of spread of trophoblastic disease.

    Statistics from

    Request Permissions

    If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.