Article Text

Download PDFPDF
Robotics into the millennium
  1. R Swaminathan1,
  2. M Wheeler1
  1. 1Department of Chemical Pathology, King's College School of Medicine and Dentistry, St Thomas' Campus, Lambeth Palace Road, London SE1 7EH, UK
  1. Professor Swaminathan email: r.swaminathan{at}umds.ac.uk

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Automation in clinical laboratories is not new. Since the pioneering work of Skeggs in developing continuous flow systems, automated analysers have become standard in almost all laboratories. It will be difficult to imagine a modern clinical laboratory without automation. This form of automation is sometimes referred to as “microautomation.” The next stage in automation is the automation of specimen processing and transport of specimens between analyser or workstations.1 This is called “macroautomation” or robotics, and typically consists of an inlet unit, sorter, transport system/tracks, automated centrifuge, level detector, bar code reader, decapper, aliquotter, recapper, and so on. This type of system was pioneered by the work of Professor M Sasaki in Japan.

There are many possible reasons to implement a robotic system in a laboratory.

Economic reasons—The cost of health care is rising universally owing to increased expectations, new technology, and the advancing age of the population. In many industrialised countries, hospitals have been closed or merged with neighbouring hospitals in order to reduce cost and to improve efficiency. Many hospital laboratories are also closed and replaced by centralised laboratory services. Macroautomation/robotics is a possible way to improve efficiency and to cope with the high workload in these centralised laboratories.2

To reduce errors—Errors in laboratories are a continuous source of problems and they are mainly due to human factors. It is estimated that the error rate in clinical laboratories may be 1–2%, although many errors go unnoticed. Some of these errors have clinical consequences. There are no data on the cost of these laboratory errors. One estimate puts this at 10% of all errors in hospital care, equivalent to more that $1.5 billion annually in the USA.3 Most of these errors are at the preanalytical stages of the sample processing. An important incentive for implementation …

View Full Text