Article Text

Download PDFPDF

The use of laboratory tests in the diagnosis of SLE
  1. William Egner1
  1. 1Department of Immunology and Protein Reference Unit, Northern General Hospital, Herries Road, Sheffield S5 7YT, UK
  1. Dr Egner email: w.egner{at}

Statistics from

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Systemic lupus erythematosus (SLE) is a protean autoimmune disease where autoantibodies are frequently targeted against intracellular antigens of the cell nucleus (double and single stranded DNA (dsDNA and ssDNA, respectively), histones, and extractable nuclear antigens (ENAs). Most of these autoantibodies are not specific for SLE and might be produced non-specifically as a result of polyclonal B cell activation. This article will focus on the evidence base for the most commonly used laboratory assays for the detection of these autoantibodies. Updated American Rheumatism Association (ARA) criteria for the diagnosis of SLE include several autoantibodies (table 1).1,2 SLE is likely if four of 11 criteria are met over any time period. Importantly, the methods for detecting these antibodies are not specified by the ARA, and this article aims to highlight the fact that the particular assay used will crucially influence the interpretation of the test (table 2). Autoantibodies are usually polyclonal—of mixed isotype, affinity, and avidity—and are often directed against multiple targets. Different assays detect particular antibody properties, which are often quite different, and the clinical importance of this for pathogenesis or diagnosis is rarely fully understood. The use of laboratory tests in SLE is a perfect example of this dilemma. The prevalence of autoantibodies varies widely in cross sectional studies, perhaps partly as a result of such differences (table 3). Immunodiffusion (ID) detects high affinity antibodies, immunofluorescence (IIF) moderate and high affinity antibodies, and enzyme linked immunosorbent assay (ELISA) low and high affinity antibodies. Purified antigens might have contaminants, or might not contain the full complement of native proteins. Recombinant antigens might lack certain epitopes, have altered glycosylation or tertiary structure, or contain contaminating bacterial antigens. All assays require careful validation to determine whether they perform adequately for detecting human autoantibodies. An ideal test would be specific (detects only …

View Full Text