Article Text

Download PDFPDF
Immunology
  1. J Unsworth
  1. Correspondence to:
 Dr J Unsworth
 Department of Immunology and Immunogenetics, Southmead Hospital, Bristol BS10 5ND, UK; joe.unsworthnbt.nhs.uk

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Sixty years of progress

Nobel prize awards in medical immunology over the past 60 years reflect the immense recent progress made. Burnet and Medawar were recognised in 1960 for their work on “acquired immunological tolerance”. Skin grafting in mice of different inbred strains showed that graft rejection is an immunity phenomenon, including key features such as specificity, memory, and amplification (second set phenomenon). Medawar subsequently demonstrated that mice accepted not only self but also foreign tissue whenever the latter was first artificially introduced during fetal life, giving insights into mechanisms of immunological tolerance.

Edelmann and Porter (1972 prize) defined “the chemical structure of antibodies”. In the 1950s they showed that immunoglobulins (antibodies) were composed of two “light” and two “heavy” protein subunits. Enzyme cleavage studies helped relate structure to function. Antigen binding resided in the “Fab” but not the “Fc” fragments. They correctly predicted that “antibodies” were Y shaped bivalent molecules.

Benacerraf, Dausset, and Snell (1980) in differing ways worked on “genetically determined structures on the cell surface that regulate immunological reactions”. Snell used inbred mouse strains to demonstrate that “histocompatibility genes” or H genes regulated transplantation of normal tissues. Dausset noticed that multiply transfused patients developed antibodies that killed donor but not host leucocytes. Realising that this was not autoimmune, he concluded that there must be human …

View Full Text