Article Text

other Versions

Download PDFPDF
Best practice for LDL-cholesterol: when and how to calculate
  1. Janine Martins1,
  2. Nicolene Steyn1,
  3. H Muller Rossouw1,
  4. Tahir S Pillay1,2
  1. 1Chemical Pathology, University of Pretoria, Pretoria, South Africa
  2. 2Chemical Pathology, University of Cape Town, Cape Town, South Africa
  1. Correspondence to Professor Tahir S Pillay, Chemical Pathology, University of Pretoria, Pretoria 0083, South Africa; tspillay{at}gmail.com

Abstract

The lipid profile is important in the risk assessment for cardiovascular disease. The lipid profile includes total cholesterol, high-density lipoprotein (HDL)-cholesterol, triglycerides (TGs) and low-density lipoprotein (LDL)-cholesterol (LDL-C). LDL-C has traditionally been calculated using the Friedewald equation (invalid with TGs greater than 4.5 mmol/L and is based on the assumption that the ratio of TG to cholesterol in very- low-density lipoprotein (VLDL) is 5 when measured in mg /dL). LDL-C can be quantified with a reference method, beta-quantification involving ultracentrifugation and this is unsuitable for routine use. Direct measurement of LDL-C was expected to provide a solution with high TGs. However, this has some challenges because of a lack of standardisation between the reagents and assays from different manufacturers as well as the additional costs. Furthermore, mild hypertriglyceridaemia also distorts direct LDL-C measurements. With the limitations of the Friedewald equation, alternatives have been derived. Newer equations include the Sampson-National Institutes of Health (NIH) equation 2 and the Martin-Hopkins equation. The Sampson-NIH2 equation was derived using beta-quantification in a population with high TG and multiple least squares regression to calculate VLDL-C, using TGs and non-HDL-C as independent variables. These data were used in a second equation to calculate LDL-C. The Sampson-NIH2 equation can be used with TGs up to 9 mmol/L. The Martin-Hopkins equation uses a 180 cell stratification of TG/non-HDL-C to determine the TG:VLDL-C ratio and can be used with TGs up to 4.5 mmol/L. Recently, an extended Martin-Hopkins equation has become available for TGs up to 9.04 mmol/L.This article discusses the best practice approach to calculating LDL-C based on the available evidence.

  • LIPOPROTEINS
  • LIPIDS
  • Hyperlipidemias
  • CHEMISTRY

Statistics from Altmetric.com

Request Permissions

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Footnotes

  • Handling editor Patrick J Twomey.

  • Contributors The paper was conceptualised and written by JM and TSP. The paper was reviewed and edited by MR and NS. All authors have read and agreed to the published version manuscript. TSP accepts full responsibility for the finished work and/or the conduct of the study, has access to the data and controlled the decision to publish.

  • Funding National Research Foundation, South Africa. National Health Laboratory Service, South Africa.

  • Competing interests None declared.

  • Provenance and peer review Commissioned; externally peer reviewed.

  • Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Linked Articles