Observations on the use of the Coulter model D electronic cell counter in clinical haematology

A. N. BLADES AND H. C. G. FLAVELL
From the Dorset County Laboratory, Dorchester, Dorset

SYNOPSIS The use of the Coulter electronic cell counting machine (model D) in a routine pathological laboratory is described, as are also the technical details involved.

The principle of the Coulter counter, model D, is that a suspension of particles passes through an orifice, where the particles interfere with the passage of an electric current, producing pulses on an electronic counter. The circuit may be adjusted to vary the critical volume which will just produce a pulse. Alteration of this 'threshold' value enables all particles to be counted, or by raising the threshold, only particles of progressively larger sizes. Both red and white cells may be counted. In counting red cells a correction is necessary because sometimes more than one red cell passes through the orifice at a time, reducing the true total; a table provided by the manufacturers gives the corrections.

RED CELLS

According to Brecher, Schneiderman, and Williams (1956), the standard error of the red cell count on this machine is 2%. Table I shows the values obtained by examination of the blood of 10 normal healthy male members of the laboratory staff, using the oxyhaemoglobin method, a haematocrit centrifuge, the Coulter red cell counter, and from these calculating the indices. The consistency of these results at the expected level confirms that the counter is more accurate than the manual methods of counting.

Figure 1 shows a typical red cell threshold curve, obtained by progressively raising the threshold. The left-hand part of the curve forms a plateau, showing that the threshold is sufficiently low to count all cells until it is raised to a value of about 12-5. The centre of this plateau is the best point for total red cell counts; at the extreme left there is a certain amount of electrical interference and false pulses due to particles of dirt, and at the right-hand end the numbers are beginning to fall off due to exclusion of the smallest red cells. Machines vary slightly in the value of their threshold settings.

From readings taken at successive values, the number of cells counted at each value can be plotted. If the value at each threshold is then subtracted from the previous one, a second curve can be constructed, showing the distribution of red cells according to volume. This curve, also shown in Fig. 1, is fairly symmetrical with a peak in the middle, analogous to the type described by Price-Jones which was, however, based on the red cell diameter, whereas this one is based on the red cell volume. It

<table>
<thead>
<tr>
<th>Blood No.</th>
<th>Haemoglobin (%)</th>
<th>Haematocrit%</th>
<th>Coulter Red Count</th>
<th>M.C.H.C.</th>
<th>Colour Index</th>
<th>M.C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98</td>
<td>47</td>
<td>4-83</td>
<td>31</td>
<td>1-00</td>
<td>97</td>
</tr>
<tr>
<td>2</td>
<td>98</td>
<td>48</td>
<td>4-91</td>
<td>30-5</td>
<td>1-00</td>
<td>97</td>
</tr>
<tr>
<td>3</td>
<td>110</td>
<td>52</td>
<td>5-25</td>
<td>32</td>
<td>1-05</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>49</td>
<td>5-01</td>
<td>30</td>
<td>0-98</td>
<td>98</td>
</tr>
<tr>
<td>5</td>
<td>98</td>
<td>46</td>
<td>4-70</td>
<td>31</td>
<td>1-04</td>
<td>98</td>
</tr>
<tr>
<td>6</td>
<td>95</td>
<td>47</td>
<td>4-77</td>
<td>30</td>
<td>1-00</td>
<td>98</td>
</tr>
<tr>
<td>7</td>
<td>105</td>
<td>50</td>
<td>5-24</td>
<td>31</td>
<td>1-05</td>
<td>95</td>
</tr>
<tr>
<td>8</td>
<td>95</td>
<td>46</td>
<td>4-74</td>
<td>30</td>
<td>1-03</td>
<td>98</td>
</tr>
<tr>
<td>9</td>
<td>103</td>
<td>50</td>
<td>5-49</td>
<td>30</td>
<td>1-03</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>98</td>
<td>48</td>
<td>4-35</td>
<td>30</td>
<td>1-12</td>
<td>110</td>
</tr>
</tbody>
</table>

\(^{1}\)4-8 g. Hb = 100%
\(^{2}\)Investigations in progress suggest that these values are about 5 to 6% too high.
is worth noting that a red cell of 8μ diameter has about twice the volume of a red cell of 6μ diameter.

Figure 2 shows the derived curves from the 10 blood samples included in Table 1. We have found that a figure of 7.5 on the threshold scale is suitable for counting the total red cells, and that for scanning the size distribution it is convenient to proceed in steps of 5 from 5 to 50. This produces the figures for calculation of mean cell volume by the method of Magath and Berkson (1960).
A. N. Blades and H. C. G. Flavell

FIG. 3. Iron-deficiency anaemia (scale, etc., as Fig. 1). Hb 56%; P.C.V. 33%; R.B.C. 4.27 m.; M.C.H.C. 25%; M.C.V. 77μ3; colour index 0.66.

FIG. 4. Iron-deficiency anaemia. Hb 57%; P.C.V. 29%; R.B.C. 3.6 m.; M.C.H.C. 29%; M.C.V. 80μ3; colour index 0.77.

FIG. 5. Iron-deficiency anaemia. Hb 50%; P.C.V. 32%; R.B.C. 3.61 m.; M.C.H.C. 23%; M.C.V. 88μ3; colour index 0.68.
Observations on the use of the Coulter model D electronic cell counter in clinical haematology

FIG. 10. Case G.B. five days after preceding figure. Reticulocyte peak merging into main body. Hb 62%; P.C.V. 28%; R.B.C. 3:49 m.; M.C.H.C. 32%; M.V.C. 80μ³; colour index 0:89.
COUNTING OF WHITE CELLS

White cell counts are reproducible on this machine with a standard error of 7.5% (Richar and Breakell, 1959) and duplicate counts can be run off at the rate of one a minute. Against this must be set the additional work involved in preparing diluting fluids, and additional care in pipetting, which is now the greatest error.

TECHNICAL DETAILS

ANTICOAGULANTS As a routine we have used venous blood taken into plastic bottles containing Anti-clot, a heparin-like substance. Blood treated with Wintrobe's anticoagulant very occasionally causes the orifice to become blocked due to oxalate crystals. We have found that the total number of red cells remains constant in whole blood treated with anti-clot and kept at 4°C. for 36 hours.

DILUTION OF BLOOD FOR COUNTING The dilutions are made in two steps. The first is 1/500 made by pipetting 20 cu. micro-litres of blood into 10 ml. of 0-9% albumin-saline. From this a second dilution is made of 1/50,000 by taking 0-2 ml. into a further 20 ml. of albumin-saline. The first dilution is then lysed with Saponin and used for the white cell count, the second dilution for the red cell count. When wiping the tip of the pipette, small pieces of lens tissue are most satisfactory.

Red cells remain stable in a dilution of 1/500 in pure 0.9% saline or in albumin-saline for 20 hours, but in a dilution of 50,000 in pure 0-9% saline red cells swell and lyse (see Fig. 13). A phosphate buffer solution containing sequestrene (see Fig. 14) was inferior to 0-9% saline containing 1 part in 30,000 of albumin (see Fig. 15). The graph of R.B.C.s in saline shows clearly the tendency of red cells to swell and lyse.

We conclude that the total red cell count is reproducible after dilution in albumin-saline for seven hours, although four hours is a good working optimum; when the red cell size distribution is to be scanned, as short a time as possible should elapse.

PREPARATION AND DISPENSING OF DILUTING FLUIDS Stock 25% solution A. R. sodium chloride is bottled in amounts of 2 litres with a plastic giving-set used as an exit. Glass-distilled water is used to dilute it to a concentration of 0.9%. This is titrated in bulk, filtered through a sintered glass filter filler (Matburn unit no. F4 with 4P filter), bottled in 540 ml. amounts in British Standard blood transfusion bottles, and autoclaved at 20 lb. for 20 minutes. The closures must be tightly screwed before autoclaving or the concentration of salt will rise, and it is safer to do this overnight to allow it to cool slowly. One part in 30,000 of bovine albumin is then added, and the bottle suspended upside down above an automatic pipette (10 or 20 ml.) connecting it by a plastic giving-set. For counting, we dispense 10 ml. amounts daily into

\footnote{Clinton Laboratories, California.}
Observations on the use of the Coulter model D electronic cell counter in clinical haematology

FIG. 13. Effect of pure 0.9% saline on R.B.C.s in dilution of 1 in 50,000, showing threshold curves at intervals of two hours (continuous line), three hours (short dashes), seven hours (dots), and 20 hours (long dashes). There is a progressive increase in large cells, i.e., swelling, until at 20 hours haemolysis is evidenced by a reduction in total numbers.

FIG. 14. Effect of phosphate buffered saline with sequestrene on R.B.C.s, as in Fig. 13. Stable up to three hours. Legend as for Fig. 13.

FIG. 15. Effect of albuminized saline on R.B.C.s. Stable up to seven hours, total stable up to 20 hours.

glass flat-bottomed tubes of about 30 ml. capacity with plastic stoppers. Albumin-saline produced by this method gives a blank count at a threshold level of about 300 R.B.C.s per 0.5 ml. Commercially prepared saline usually gives counts of under 250 per 0.5 ml. Regular checks should be made of the blank count as this gives an indication of whether the apparatus is becoming contaminated.

CLEANING OF GLASSWARE After use the glass pots are rinsed in tap water, soaked in 0.3% Haemosol for 30 minutes, rinsed in distilled water, and dried upside down in an oven. The plastic stoppers are similarly cleaned, but dried at 37°C. Pipettes are rinsed in Haemosol, distilled water and ether-meths, and dried.

WHITE CELL COUNTING White cells are counted in the 1/500 dilution after the addition of Saponin.

SAPONIN This is a 2% solution of white Saponin (Hopkin and Williams) of which 1 drop is added to the first dilution, after the preparation of the second dilution, to lyse the red cells. This takes four minutes, and the white cells should then be counted, as after a further interval they also begin to disappear.

We are indebted to Messrs. Coulter for information and technical data, to Mrs. R. Harris for clerical assistance and to the Wessex Regional Board for financial assistance and encouragement.

REFERENCES
Broadsheets prepared by the Association of Clinical Pathologists

The following broadsheets (new series) are published by the Association of Clinical Pathologists. They may be obtained from Dr. R. B. H. Tierney, Pathological Laboratory, Boutport Street, Barnstaple, N. Devon. The prices include postage, but airmail will be charged extra.

4 The Estimation of Carbon Monoxide in Blood. 1953. D. A. Stanley. 1s.
6 The Paul-Bunnell Test. 1954. R. H. A. Swain. 1s.
7 The Papanicolaou Technique for the Detection of Malignant Cells in Sputum. 1955. F. Hampson. 1s.
16 Preservation of Pathological Museum Specimens. 1957. L. W. Proger. 1s.
18 Cultural Diagnosis of Whooping-cough. 1957. B. W. Lacey. 1s.
20 The Rose-Waaler Test. 1957. C. L. Greenbury. 1s.
21 Investigation of Porphyrin/Porphyria. 1958 (re-printed 1962). C. Rimington. 2s.
24 Safe Handling of Radioactive Tissues in the Laboratory and Post-mortem Room. 1959. R. C. Curran. 1s.
26 The Periodic Acid-Schiff Reaction. 1959. A. G. E. Pearse 1s.
28 Daily Fatty Acid Excretion. 1960. A. C. Frazer. 2s.
30 Control of Accuracy in Chemical Pathology. 1961. G. H. Grant. 4s.
31 Investigation of Haemorrhagic States with Special Reference to Defects of Coagulation of the Blood. 1961. E. K. Blackburn. 4s.
33 The Laboratory Detection of Abnormal Haemoglobins. 1961. H. Lehmann and J. A. M. Ager. 4s.
35 The Estimation of Faecal 'Urobilinogen'. 1961. C. H. Gray. 2s.
36 Quantitative Determination of Porphobilinogen and Porphyrins in Urine and Faeces. 1961. C. Rimington. 3s. 6d.
38 The Augmented Histamine Gastric Function Test. 1961. M. Lubran. 2s.
40 Short Term Preservation of Bacterial Cultures. 1962. E. Joan Stokes. 2s.
41 Serological Tests for Syphilis. 1962. A. E. Wilkinson. 6s.
42 The Determination of Glucose 6-Phosphate Dehydrogenase in Red Cells. 1962. T. A. J. Prankerd. 2s.
43 Mycological Techniques. 1962. R. W. Riddell. 3s. 6d.

CORRECTIONS

In the paper 'Observations on the use of the Coulter model D electronic cell counter in clinical haematology' (Blades, A. N., and Flavell, H. C. G., J. clin. Path., 16, 158-163) Fig. 9 should be Fig. 8 and vice versa. Also on page 163, col. 1, line 3 should read 'gives a blank count at a threshold level of 5 of about 300 per 0·5 ml.'