Platelet counting using the Coulter electronic counter

M. J. EGGLETON AND A. A. SHARP

From the Radcliffe Infirmary, Oxford

SYNOPSIS A method for counting platelets in dilutions of platelet-rich plasma using the Coulter electronic counter is described. The results obtained show that such platelet counts are at least as accurate as the best methods of visual counting. Various technical difficulties encountered are discussed.

Platelet counting by visual methods, either by direct or indirect counting, is recognized to be inaccurate. Yet it must be admitted that these methods, although tedious, have served well for deciding low, normal, or high blood platelet counts in clinical haematology. Further, with experienced observers and by using phase-contrast microscopy, the error of these visual methods can be substantially reduced (Brecher, Schneiderman, and Cronkite, 1953).

Yet, when platelet counts are required on high-density suspensions for experimental purposes, e.g., radioactive or biochemical studies, or when the numbers of platelets in numerous samples require to be counted, visual methods are tedious and time-consuming. Therefore it was decided to attempt to apply the principle of electronic counting to this problem and it is the purpose of this paper to describe the investigations that have been made into this problem and to describe one method for counting platelets using the Coulter electronic counter.

THE PRINCIPLE OF CELL OR PARTICLE COUNTING USING THE COULTER ELECTRONIC COUNTER

If particles or cells are passed through a very small aperture along with an electric current, each particle or cell will produce a temporary resistance to the flow of current as it transiently occupies the aperture. The larger the volume of the cell, the greater the resistance. This resistance can be converted to a proportional signal which can be detected electronically. Therefore, if a known volume of a suspension of particles or cells is passed through the aperture, it is possible to count electronically the number of cells or particles in this volume. Large cells, such as red cells and white cells, produce a relatively large signal and are counted by this method using an aperture of 100 μ in diameter. As the volume of platelets varies from 2 to 30 μ, i.e., 1/40 to 1/3 of a red cell, the resistance they provide is smaller. So to enhance the signal produced by these small cytoplasmic fragments it is necessary both to reduce the size of the aperture to 70 or even 50 μ and to increase the current flowing through the aperture (aperture current-setting). When this is done the signal produced by dust particles and by the inherent electronic background noise is very close to that produced by platelets. The counter is, however, so designed that it is possible to eliminate the noise and small particle signals and still measure the signals produced by the platelets by increasing the threshold or discriminator voltage. Thus, only signals of a sufficient size are counted.

METHODS

PLATELET-RICH PLASMA Venous blood, 9-7 ml., collected by careful venepuncture using a siliconized syringe, is placed in a siliconed, graduated centrifuge tube containing 0-3 ml. 4-5% disodium E.D.T.A. (ethylene diamine tetra-acetic acid) and mixed. The blood is spun at 900 r.p.m. for 15 minutes (60 g) and the supernatant plasma separated.

VISUAL PLATELET COUNTS (Brecher, Schneiderman, and Cronkite, 1953) A one-twentieth dilution of the sample to be counted is made in a conventional white cell pipette with filtered 1% ammonium oxalate and mixed by a vibration agitator for three minutes. Platelet counting chambers (Messrs. Hawksley Limited, Improved Neubauer Ruling) are loaded with the diluted specimen and allowed to stand for 30 minutes in a moist chamber before counting. All counts are performed using phase contrast microscopy with a magnification of × 320.
Platelet counting using the Coulter electronic counter

The number of platelets in 80 squares (1 square = 1/400 sq. mm.) is counted in duplicate.

DILUTION OF PLATELET-RICH PLASMA FOR ELECTRONIC COUNTING Platelet-rich plasma, 20 c.mm., is added to 100 ml. particle-free 0-85% saline giving a 1/5,000 dilution.

ELECTRONIC COUNTING The 1/5,000 dilution is counted using the Coulter counter with a 50 μ orifice, aperture current setting 7, and threshold 25. Platelet-free saline is counted to determine the background count due to electronic noise and debris and this value subtracted from the counts obtained for the platelet-containing dilutions.

PACKED CELL VOLUME The packed cell volume of the whole blood is determined using the Hawksley high-speed haematocrit centrifuge.

PARTICLE-FREE SALINE Normal 0-85% saline is filtered through a sintered glass filter (Gallenkamp ref. No. 225 × 3) until the particle count, as measured by the electronic counter, is below 5,000/c.mm. Scrupulous attention to cleanliness is imperative at all stages and saline is freshly filtered before each batch of counts.

RESULTS

The effect of varying aperture current setting and threshold on electronic counts of a dilution of platelet-rich plasma is illustrated in Fig. 1.

The correlation between visual counts and electronic counts on platelet-rich plasma is illustrated in Fig. 2.

Platelet counts obtained for platelet-rich plasma were corrected to whole blood counts using the following formula:

\[
\text{Whole blood count} = \frac{\text{platelet-rich plasma count} \times (100 - \text{P.C.V.})}{100}
\]

The relationship of this calculated value to the visual count on the original whole blood sample is shown in Fig. 3.

The accuracy of replicate visual counts and electronic counts on a single platelet-rich plasma is

FIG. 1. The effect of varying aperture current setting and threshold voltage on electronic platelet counts.

FIG. 2. The relationship of electronic to visual platelet-rich plasma counts.

FIG. 3. The relationship of corrected electronic platelet-rich plasma counts to visual whole blood counts.
illustrated in Table I. Each count represents a separate dilution of the original plasma and the
dilutions and counts were made by four persons.

The results have been analysed to show the machine
error of the Coulter counter and the human errors
of the pipetting and counting in both methods
(Table I). These indicate that the machine itself is
not a significant source of error but that the major
error of the method is dependent on the process of
dilution. Also there is no significant difference in
the accuracy of electronic counting and visual counting.

TABLE I

REPLICATE ELECTRONIC AND VISUAL
PLATELET COUNTS ON 16 SEPARATE DILUTIONS
OF PLATELET-RICH PLASMA

<table>
<thead>
<tr>
<th>Count I</th>
<th>Count II</th>
<th>Count III</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>68,323</td>
<td>68,951</td>
<td>68,134</td>
<td>68,469</td>
</tr>
<tr>
<td>71,460</td>
<td>71,482</td>
<td>71,085</td>
<td>71,343</td>
</tr>
<tr>
<td>69,142</td>
<td>68,844</td>
<td>68,681</td>
<td>68,889</td>
</tr>
<tr>
<td>65,633</td>
<td>65,251</td>
<td>65,652</td>
<td>65,512</td>
</tr>
<tr>
<td>70,800</td>
<td>71,161</td>
<td>71,600</td>
<td>71,187</td>
</tr>
<tr>
<td>73,122</td>
<td>72,626</td>
<td>72,921</td>
<td>72,890</td>
</tr>
<tr>
<td>80,336</td>
<td>80,361</td>
<td>80,541</td>
<td>80,413</td>
</tr>
<tr>
<td>78,580</td>
<td>78,075</td>
<td>78,221</td>
<td>78,293</td>
</tr>
<tr>
<td>56,730</td>
<td>56,351</td>
<td>56,076</td>
<td>56,386</td>
</tr>
<tr>
<td>64,770</td>
<td>64,461</td>
<td>64,155</td>
<td>64,462</td>
</tr>
<tr>
<td>67,240</td>
<td>66,844</td>
<td>67,353</td>
<td>67,146</td>
</tr>
<tr>
<td>65,152</td>
<td>65,194</td>
<td>65,931</td>
<td>65,093</td>
</tr>
<tr>
<td>71,830</td>
<td>71,542</td>
<td>71,783</td>
<td>71,718</td>
</tr>
<tr>
<td>65,830</td>
<td>65,041</td>
<td>65,163</td>
<td>65,195</td>
</tr>
<tr>
<td>67,015</td>
<td>66,904</td>
<td>66,960</td>
<td>66,960</td>
</tr>
<tr>
<td>66,946</td>
<td>66,673</td>
<td>66,176</td>
<td>66,598</td>
</tr>
</tbody>
</table>

Analysis of Variance

Electronic counts S.D. between individual
counts on same dilution, i.e., machine error = 165
S.D. between different dilutions of same platelet sample, i.e.,
dilution error = 5,682
Visual counts S.D. between different dilutions of same platelet sample = 3,822

The results obtained by counting known dilutions of a concentrated platelet suspension are illustrated in
Fig. 4. The fall-off in the curve obtained with
counts over 1,400,000 c.mm. is probably due to the
coincidence of more than one platelet passing through the
aperture at one time. Coincidence correction
factors have not been determined as with suspected
counts of over 1 million it would appear simpler to
count a 1/50,000 dilution of the platelet-rich plasma.

Counting platelets by the electronic method has
not been straightforward. Blockage of the 50μ
aperture has been the greatest nuisance during these
experiments. Such blockages may be partial and
not easily detectable.

Certain manufactured apertures produce a high
'noise' signal level either due to some inherent defect
in manufacture or due to the presence of a small
crack in the glass around the aperture. When this
occurred the division between platelet signals and
'noise' was too small. The only solution has been to
discard the faulty tube and test another aperture tube
until a suitable one was found.

Platelets can be counted using a 70μ aperture but
the plateaux of the calibration curves were less
satisfactory and for this reason the 50μ aperture was
preferred.

In our hands E.D.T.A. has proved to be a more
satisfactory anticoagulant than citrate when compared
by calibration curves and visual counts.

The time and speed of spinning whole blood to
separate the platelet-rich plasma is critical. Even
using the suggested values, 15 minutes at 900 r.p.m.
(60g), significant numbers of platelets have been
lost when spinning certain samples. This pheno-

FIG. 4. Electronic platelet counts on known dilutions of a
concentrated plasma suspension.

...
menon is probably due to an imperfect venepuncture causing platelet clumping and subsequent spinning out of the aggregates.

The Coulter counter may be used to count the particles in 0.5 ml. of fluid or in a volume approximately one tenth of this. The variations using the different volumes have been compared on the same blood sample (Table II). The use of the smaller volume has resulted in a quicker turnover and fewer spoilt counts due to the aperture becoming totally or partially blocked during the counting period.

DISCUSSION

Attempts to count platelets in dilutions of lysed whole blood have been unsuccessful as the lysed red cell ghosts can be detected and counted by this apparatus.

The technique of counting platelet-rich plasma has been successful but is as time-consuming as any direct visual counting method, and it is only when counts have to be done on several dilutions or on several blood samples that time and effort can be saved.

The results obtained show that platelets in platelet-rich plasma can be counted electronically at least as well as by visual methods, and that it is possible to correlate platelet-rich plasma platelet counts to whole blood platelet counts by using the packed cell volume as the correcting factor.

The error of replicate counts on any given dilution is small (Table I) and it is apparent that the major error in this method lies in the preparation of the 1/5,000 dilution of the platelet-rich plasma (Table I). Therefore, until some form of automatic dilution apparatus is available the error of platelet counting by electronic methods would appear to be of the same order as visual counting.

Before complete reliance can be placed on electronic counts a standard of known particle size and number must be devised to test the counter before each series of counts. Such a standard is desirable for electronic red and white cell counts as well as for platelet counts. Suspensions of particles of known size are available and are being tested but so far no reliable standard has been devised.

In conclusion, the results show that it is possible to count platelets in suspension with acceptable accuracy using the Coulter electronic counter. No doubt better techniques will be soon developed and direct platelet counts of whole blood samples will be possible.

We wish to thank Coulter Electronic Limited for their generous help; Mr. D. Goodchild for his advice and encouragement; and Dr. M. G. Bulmer of the Department of Biometry, Oxford University, for advice on statistical analysis of results.

REFERENCE