Autofluorescence of bone tissues

A. I. D. PRENTICE

From Notley Hospital, Braintree, Essex

SYNOPSIS The phenomenon of autofluorescence of bone is due primarily to the collagen itself rather than to incidental substances adsorbed on to it. Fluorescent microscopy is a convenient method of dating the different microanatomical components of bone, and in this respect the same conclusions can be reached from the study of microradiographs or autofluorescent photographs, which is proof of the intimate relation between the development of matrix and the progression of mineralization.

It has been known for many years that collagen, in common with many other biological tissues, shows autofluorescence when irradiated by ultraviolet light.

The colour when viewed with a green-yellow ultraviolet stopping eyepiece filter, is a steely blue with a greenish component.

During the course of examination of bone sections for tetracycline marks (Prentice, 1965) it was seen that there were variations in the autofluorescence of the bone itself, and it is the extension of these observations which is the subject of this paper.

METHODS

The microscope arrangement consists of a 200 amp mercury vapour light source and an exciter filter with a main peak at 360 mμ. A red component does not interfere if a low-power dark ground condenser is used. The eyepiece filter transmits from 450 mμ upwards.

Photographs were taken with Agfa colour film, exposures varying between four and eight minutes.

The specimens were prepared by the method previously described by Jowsey (1955) from femur shaft bone obtained at routine necropsy. Sometimes the bone was cut unfixed and sometimes after short fixation in alcohol or formalin, but prolonged fixation was avoided because of the possibility of altering the autofluorescence. When dealing with cortical bone embedding in methacrylate is not necessary.

RESULTS

The bone sections show that not all the osteons autofluoresce to the same extent. From examinations of the relative positions of the poorly fluorescent osteons and from the study of bone previously marked by tetracycline it can be seen that the oldest bone components fluoresce most and the newest least (Fig. 1). Removal of the mineral from the section does not affect the autofluorescence (Fig. 2).

It was thought possible that the differences in fluorescence might be due to some substance that was adsorbed on to the bone, but immersing the sections in weak acids, alkalis, or organic solvents had no effect. Nor did the application of heat to the point of destruction. It seems likely, therefore, that the differences are due to factors inherent in the bone collagen itself.

Recent observations of Armstrong and Horsley (1966), who have isolated material from alkaline hydrolysates of bone with the same fluorescent characteristics as collagen, support this conclusion.

Observations which have been made from examining microradiographs, such as those of Amprino (1952) and Sissons, Jowsey, and Stewart (1960) and Jowsey (1960), indicate that initial mineralization of a new osteon reaches about 75% quite rapidly, but further mineralization is a slow process taking months or years. Bone from children contains a high proportion of osteons which are incompletely mineralized. In the aged there is an accumulation of bone with high mineral content in which are scattered new osteons. The contrast between the different bone components is therefore very great.

All these changes can equally well be observed in autofluorescent photographs. Microradiographs compared with autofluorescent photographs show a close correlation (Figs. 3a and 3b). Bone from young individuals shows generally poor autofluorescence. Indeed, where for any reason the turnover of bone is rapid the number of new osteons is increased and the general autofluorescence is reduced. Such a picture is seen in hyperparathyroid disease.
FIG. 1. There is a variation in the amount of fluorescence from different osteons. The 'background bone', which is the oldest, fluoresces most. A tetracycline ring (T) surrounds one osteon which indicates that this particular osteon started to form 810 days before death.

FIG. 2. Removal of the mineral from a bone section does not affect the fluorescence (decalcified section).

FIG. 3a

FIG. 3b

FIGS. 3a and 3b. An autofluorescent photograph and a microradiograph of the same piece of bone indicate that the degree of autofluorescence and the degree of mineralization are closely related. The tetracycline ring (T) in Fig. 3a indicates that the osteon was forming 150 days before death.
Autofluorescence of bone tissues

In bone from the aged there is an accumulation of highly fluorescent bone, particularly poorly fluorescent osteones scattered about. Osteoid can be distinguished by autofluorescence from recently calcified bone even after the decalcification of the tissue, which must indicate an irreversible alteration of bone matrix on mineralization.

The July 1967 Issue

Pathological findings in three cases of fungal endocarditis complicating open-heart surgery E. M. McCONNELL and C. ROBERTS

Histopathology of fatal adenovirus infection of the respiratory tract in young children D. M. O. BECROFT

Asbestos bodies in lungs at necropsy G. HEFIN ROBERTS

‘Residual bodies’ in sarcoid and sarcoid-like granulomas W. JONES WILLIAMS and D. WILLIAMS

Significance of a ‘starry sky’ in lymphosarcoma in Britain J. GOUGH

Case of extensive necrosis of the oesophageal mucosa following hypothermia J. L. BRENNAN

Odontogenic tumour of lip F. M. COLE and A. W. JONES

Ossification in the sternum as a means of assessing skeletal age I. C. F. RIACH

The parathyroid oxyphil cells A. C. CHRISTIE

New methods for detecting changes in the surface appearance of human red blood cells A. J. SALSBURY and J. A. CLARKE

Determination of iron in urine with special reference to the desferrioxamine test O. LUNDVALL and A. WEINEFELD

Partial thromboplastin time test with kaolin: diagnosis of haemophilia and Christmas disease without natural reference plasma Susan F. KNIGHTS and G. I. INGRAM

Diagnosis of haemophilia: use of an artificial factor-VIII-deficient human plasma system E. M. ESSMEN and G. I. C. INGRAM

Antithromboplastic and thromboplastic activities of fatty acids W. W. FULLERTON, W. A. BOGGUST, and R. A. Q. O’MEARA

Gel scintillation counting of 131I in plasma at high efficiencies T. K. BELL

Micrococcaceae from the urinary tract in pregnancy A. P. ROBERTS

Mycoplasma hominis in pregnancy D. M. JONES

‘Normal’ vaginal microbiology of women of childbearing age in relation to the use of oral contraceptives and vaginal tampons C. A. MORRIS and DELIA F. MORRIS

Survey of the incidence of tetracycline-resistant haemolytic streptococci between 1958 and 1965 J. V. DADSWELL

New slide test for infectious mononucleosis R. J. L. DAVIDSON

Origins of serum alkaline phosphatase J. M. YONG

An interpretation of the elevation of serum alkaline phosphatase in disease P. G. HILL and H. G. SAMMONS

Urinary excretion of leucine aminopeptidase in pregnancy D. P. MULLAN

Observations on the collection and handling of blood samples for N.E.F.A. estimation D. V. I. FAIRWEATHER and R. LAYTON

Technical methods

Desferrioxamine chelatable body iron J. FIELDING

Cyanmethaemoglybinometry on the AutoAnalyzer M. G. NELSON

Letters to the Editor

Association of Clinical Pathologists: 78th General Meeting

Book reviews

Copies are still available and may be obtained from the PUBLISHING MANAGER, BRITISH MEDICAL ASSOCIATION, TAVISTOCK SQUARE, W.C.1. price 18. 6D.