Adapting the glucose channel on the SMA 6/60 for creatinine determinations in blood and urine

MAGDALENA MOLL AND BARBARA A. PRING From the John Bonnet Clinical Laboratories (Biochemical Section), Addenbrooke's Hospital, Cambridge

With the predetermined channels the SMA 6/60 is somewhat rigid and not easily modified. However, the glucose channel is wasteful, and we have therefore modified it as follows. The method is basically the one described by Technicon for a one-channel analyser, with slight modifications in the manifold (see flow diagram). The proportions of the reagents one to another have mainly been kept the same, except for the amount of sample which was increased to give a better sensitivity.

Received for publication 20 May 1970.

Reagents

NaCl 0.9% (diluent) . . . + 1 ml/l Brij 35
H2O (recipient). . . . + 1 ml/l Brij 35
Picric acid (saturated). . . + 1 ml/l Brij 35
NaOH 0.5 N . . . + 1 ml/l Brij 35

The filter (460 μ) has been replaced by one of 505 μ. Special care has to be taken to get a good bubble pattern. Brij 35 (1 ml/l) was added to all the reagents as wetting agent. If two time-delay coils are used instead of one, it is better to have an upwards flow in both of them to avoid pressure variations which result again in an uneven bubble pattern.

The original chart paper can be used if the usual calculation of

\[
\text{Reading of test} \times \text{concentration of standard}
\]

is made out, or indeed if a table of the standard readings against standard concentrations has been drawn up, on which the results can be read off. Although we did not extend our standard curve (0-15 mg% creatinine) above the equivalent of 325 mg% glucose the results were very satisfactory. The present chart paper, however, with its glucose scale, is unsuitable as a means of reporting the creatinine results directly to the ward.

Fig. Flow chart for the glucose channel on the SMA 6/60 as adapted. Since this method was submitted the flow rate of the cell has been changed by altering the waste line from 0.045 to 0.056.