Effects of oestrogen and progestogen on serum levels of α_2-macroglobulin, transferrin, albumin, and IgG

C. H. W. HORNE, ANNETTE C. MALLINSON, J. FERGUSON, AND R. B. GOUDIE

From the University Department of Pathology, Western Infirmary, Glasgow

SYNOPSIS The levels of four serum proteins, assayed by a radial immunodiffusion technique, have been measured in healthy women who had been given either the oestrogen or progestogen component of a combined oral contraceptive preparation for three weeks. Raised α_2-macroglobulin and transferrin levels were found after oestrogen treatment but albumin and IgG did not significantly alter. In the progestogen-treated group all four proteins remained unchanged. The four proteins have also been assayed at frequent intervals during the normal menstrual cycle. No evidence of cyclical variation was found.

In a previous study using a radial immunodiffusion technique (Horne, Howie, Weir, and Goudie, 1970) we demonstrated significant increases in the levels of serum α_2-macroglobulin, transferrin, and IgG in normal females who had received combined oestrogen/progestogen oral contraceptives. It therefore seemed of interest to determine whether these changes could be produced by the action of oestrogen or progestogen components administered alone and whether endogenous production of steroid hormones during the normal menstrual cycle caused physiological variation in the serum levels of these proteins.

Subjects and Methods

Two groups of 14 healthy females (mean ages 20-6 and 20-9 years, ranges 17-28 and 17-30) were given respectively either 50 μg of the oestrogen mestranol or 1 mg of the progestogen ethynodiol diacetate daily for a period of three weeks beginning on day 5 of a menstrual cycle. Before administration of these preparations serum was obtained on day 3 of the cycle; a further six samples were taken at weekly intervals during treatment and the subsequent three weeks.

To determine the effects of endogenous hormones sera were also obtained from a third group of 14 healthy females (mean age 19-9 years, range 19-23) at three- to four-day intervals throughout one complete menstrual cycle.

The sera were stored for up to 16 weeks at -20°C before the serum protein levels were measured by a radial immunodiffusion technique (Fahey and McKelvey, 1965; Mancini, Carbonara, and Hermans, 1965). The specific antisera were prepared as described in a previous communication (Horne et al, 1970). To minimize the effects of interplate variation (Thompson, Horne, Steele, and Goudie, 1969) sera from any one subject were always tested in duplicate in a single assay plate in randomized wells. 'Absolute' values for each protein were calculated from a calibration curve prepared with solutions of a freeze-dried, reconstituted human serum containing 3, 6, 12, and 18 g protein per 100μl and standardized with reference to a Behringwerke serum containing specified concentrations of the proteins.

Total serum iron-binding capacity (TIBC) was measured by the method of Young and Hicks (1965) on sera obtained before and after three weeks' treatment with oestrogen and progestogen.

Results

Table I shows that mestranol (M) leads to significant maximum increases in the serum levels of α_2-macroglobulin and transferrin of 23% and 28% above the pretreatment levels ($p < 0.01$). The increases were maximal one week after completion of treatment and even two weeks later the levels had not returned to the pretreatment levels. There was no significant change in α_2-macroglobulin or transferrin following administration of ethynodiol diacetate; albumin and IgG did not significantly alter with either mestranol or ethynodiol diacetate.

No significant change in the serum levels of any
Effects of oestrogen and progestogen on serum levels

<table>
<thead>
<tr>
<th>Protein (mg/100 ml)</th>
<th>Preparation</th>
<th>Day 0</th>
<th>Treatment</th>
<th>Day 7</th>
<th>Day 14</th>
<th>Day 21</th>
<th>After Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha-Macroglobulin</td>
<td>M</td>
<td>291 ± 57</td>
<td>331 ± 51</td>
<td>348 ± 57</td>
<td>352 ± 57</td>
<td>358 ± 63</td>
<td>343 ± 35</td>
</tr>
<tr>
<td></td>
<td>ED</td>
<td>287 ± 67</td>
<td>291 ± 67</td>
<td>299 ± 63</td>
<td>303 ± 60</td>
<td>296 ± 67</td>
<td>297 ± 63</td>
</tr>
<tr>
<td>Transferrin</td>
<td>M</td>
<td>257 ± 56</td>
<td>275 ± 63</td>
<td>297 ± 61</td>
<td>306 ± 69</td>
<td>320 ± 70</td>
<td>278 ± 62</td>
</tr>
<tr>
<td></td>
<td>ED</td>
<td>269 ± 54</td>
<td>288 ± 62</td>
<td>289 ± 44</td>
<td>276 ± 41</td>
<td>289 ± 55</td>
<td>286 ± 34</td>
</tr>
<tr>
<td>Albumin</td>
<td>M</td>
<td>4318 ± 402</td>
<td>4454 ± 271</td>
<td>4371 ± 285</td>
<td>4304 ± 368</td>
<td>4415 ± 398</td>
<td>4311 ± 225</td>
</tr>
<tr>
<td></td>
<td>ED</td>
<td>4293 ± 385</td>
<td>4461 ± 396</td>
<td>4361 ± 268</td>
<td>4346 ± 340</td>
<td>4413 ± 503</td>
<td>4317 ± 356</td>
</tr>
<tr>
<td>IgG</td>
<td>M</td>
<td>1183 ± 307</td>
<td>1122 ± 318</td>
<td>1200 ± 359</td>
<td>1092 ± 285</td>
<td>1242 ± 349</td>
<td>1121 ± 373</td>
</tr>
<tr>
<td></td>
<td>ED</td>
<td>1130 ± 351</td>
<td>1112 ± 277</td>
<td>1115 ± 290</td>
<td>1041 ± 65</td>
<td>1064 ± 240</td>
<td>1128 ± 224</td>
</tr>
</tbody>
</table>

Table I Effects of mestranol (M) and ethynodiol diacetate (ED) on serum protein levels (mean ± SD in mg/100 ml) in 14 subjects in each group

1 Student's t = 2.9556 p < 0.01
2 Student's t = 3.0057 p < 0.01

<table>
<thead>
<tr>
<th>Protein (mg/100 ml)</th>
<th>Day of Menstrual Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-4</td>
</tr>
<tr>
<td>Alpha-Macroglobulin</td>
<td>420 ± 75</td>
</tr>
<tr>
<td>Transferrin</td>
<td>226 ± 39</td>
</tr>
<tr>
<td>Albumin</td>
<td>4277 ± 395</td>
</tr>
<tr>
<td>IgG</td>
<td>1218 ± 415</td>
</tr>
</tbody>
</table>

Table II Serum protein levels (mean ± SD) in 14 subjects during one menstrual cycle

Discussion

Our results clearly show that oestrogen is responsible for significant increases in alpha-macroglobulin and transferrin of a similar order of magnitude to those found following administration of combined oral contraceptives in our previous study (Horne et al., 1970).

Like Laurell, Kullander, and Thorell (1969) we do not find a significant effect of progestogen on transferrin levels whereas Briggs and Staniford (1969) have found an increase in total iron-binding capacity, presumably attributable to a rise in transferrin, following administration of progestogen. Furthermore, Musa, Doe, and Seal (1967) find no increase in transferrin levels following oestrogen treatment in marked contrast to our findings. Unfortunately in all the above studies different synthetic steroid hormones have been used for varying periods. Since the other workers measured TIBC (Briggs and Staniford, 1969) and obtained different results, we wondered whether there might be a discrepancy between transferrin levels and TIBC following hormone therapy but in our cases this proved not to be so.

In our short-term experiments we have again found no significant change in albumin, which is known to fall by approximately 10% in patients receiving combined oral contraceptives for several months (Hønærg and Rossing, 1969).

We suspect that our previous finding of a 17% rise in serum IgG levels following combined oestrogen/progestogen oral contraceptives is fortuitous. Laurell, Kullander and Thorell (1967) demonstrated no such increase nor have we in our present study with oestrogen and progestogen administered separately.

Finally our failure to demonstrate changes in the levels of these proteins during the menstrual cycle suggests that if physiological variations do occur they must be too small to be measured by our methods.

This study was supported by grants from Action for the Crippled Child, the Secretary of State for Scotland, and research funds of Glasgow University.
We are very grateful to Dr E. B. Hendry and his staff for the TIBC measurements and to Dr H. Singh for supplying some of the rabbit antihuman IgG serum. The mestranol and ethynodiol diacetate preparations were generously gifted by G. D. Searle & Co Ltd, High Wycombe.

References

Reports and Bulletins prepared by the Association of Clinical Biochemists

The following reports and bulletins are published by the Association of Clinical Biochemists. They may be obtained from The Administrative Office, Association of Clinical Biochemists, 7 Warwick Court, Holborn, London, WC1R 5DH. The prices include postage, but airmail will be charged extra. Overseas readers should remit by British Postal or Money Order. If this is not possible the equivalent of 50p is the minimum amount that can be accepted.

SCIENTIFIC REPORTS

4 An Evaluation of 5 Commercial Flame Photometers suitable for the Simultaneous Determination of Sodium and Potassium March 1970 P. M. G. BROUGHTON and J. B. DAWSON 85p ($2)

TECHNICAL BULLETINS
9 Determination of Urea by AutoAnalyzer November 1966 RUTH M. HASLAM 42p ($1)

10 Filter Fluorimeters. A comparative list of 14 instruments March 1967 HANNELORE BRAUNSBERG (Reissued in response to demand. Text still valuable, list now out of date) 42p ($1)

11 Determination of Serum Albumin by AutoAnalyzer using Bromocresol Green October 1967 B. E. NORTHAM and G. M. WIDDOWSON 42p ($1)

13 An Assessment of the Technicon Type II Sampler Unit March 1968 B. C. GRAY and G. K. MCGOWAN 42p ($1)

14 Atomic Absorption Spectroscopy. An outline of its principles and a guide to the selection of instruments May 1968 J. B. DAWSON and P. M. G. BROUGHTON 42p ($1)

15 A Guide to Automatic Pipettes (2nd edition) June 1968 P. M. G. BROUGHTON 42p ($1)

16 A Guide to Automation in Clinical Chemistry May 1969 P. M. G. BROUGHTON 62p ($1.50)

17 Flame Photometers (2nd edition) 1969 P. WILDING 62p ($1.50)

19 Spectrophotometers. A comparative list of low-priced instruments readily available in Britain May 1970 C. E. WILDE and P. SEWELL 62p ($1.50)

20 Quantities and Units in Clinical Biochemistry June 1970 P. M. G. BROUGHTON 62p ($1.50) More than 30 copies in units of 10 at 20p

21 Filter Fluorimeters: A comparative list of 18 instruments September 1970 H. BRAUNSBERG and S. BROWN 62p ($1.50)