Urinary infection caused by *Micrococcus* subgroup 3

HELEN KERR

From the Department of Microbiology, United Bristol Hospitals

Synopsis The laboratory findings and clinical presentations in urinary infections in 23 nurses, 10 caused by *Micrococcus* subgroup 3 and 13 by *Escherichia coli*, were studied, and the symptoms and possible predisposing factors compared. There were no important differences between the two groups. The infections caused by *Micrococcus* subgroup 3 were symptomatically severe, as were those caused by *Escherichia coli*.

‘Coagulase-negative staphylococci’ are often found in urine specimens as contaminants from the urethra, introitus, or skin. It is now well established, however, that similar organisms may infect the urinary tract (Torres Pereira, 1962; Mitchell, 1964; Gallagher, Montgomerie, and North, 1965; Person, Yu, and Washington, 1969; Bailey, Gower, Roberts, and De Wardener, 1971). The problem of elucidating the pathogenic role of these bacteria was simplified by the introduction of Baird-Parker’s classification (1963) which divides the *Micrococcaceae*, on the basis of biochemical characters, into subgroups of *Staphylococcus* and *Micrococcus*. Infections in patients whose resistance is lowered by catheterization or by underlying urinary tract abnormality are caused by a variety of coagulase-negative strains, commonly Baird-Parker’s *Staphylococcus* subgroups II and V (Mitchell, 1968) and sometimes by *Staphylococcus aureus* (coagulase-positive) (Baird-Parker’s *Staphylococcus* subgroup 1). Infections of the urinary tract in healthy women, however, were shown by Mitchell (1968) to be characteristically caused by *Micrococcus* subgroup 3. It has been suggested that some factor in the urinary tract acts selectively in favour of micrococci and in particular of subgroup 3 (Roberts, 1967). It is interesting to note that *Staphylococcus aureus*, the most pathogenic member of the *Micrococcaceae* at other sites, rarely infects the undamaged urinary tract. Mitchell (1968) showed that micrococal infections caused pyuria and other signs and symptoms of acute inflammation of the urinary tract but there have been no reports comparing the clinical features and the severity of the infections with those due to *Escherichia coli* in previously healthy young women.

Subjects and Methods

The patients were nurses who attended the nurses’ sick bay of the United Bristol Hospitals with symptoms of acute urinary infection between June 1971 and January 1972 (inclusive). One urine specimen was obtained from each patient as antibiogram treatment was started as soon as one sample was obtained. All *Micrococcus* subgroup 3 and *Escherichia coli* infections during this time were included. Fresh or refrigerated midstream specimens of urine were examined by microscopy and by culture on MacConkey agar (on which micrococi and *Escherichia coli* grew freely). Semiquantitative culture was performed by a standard loop technique and bacterial counts exceeding 104 colony-forming units per millilitre were considered significant. The centrifuged deposit was examined and more than 10 leucocytes per high-power field were considered as significant pyuria (Albuquerque, Forster, Salles, and Cury, 1970). Gram-positive cocci (other than streptococci) were investigated for novobiocin resistance, a characteristic property of micrococci (Alder, Brown, and Mitchell, 1966) and for coagulase production. Coagulase-negative, novobiocin-resistant cultures were later identified by Baird-Parker’s methods (1963). Lactose-fermenting, Gram-negative bacilli were identified by the methods of Cowan and Steel (1965). As soon as the provisional diagnosis was made, the names of the patients, but not the identity of the infecting organisms, were reported to the author who interviewed the patients and completed a standard questionnaire.

Results

The micrococal infections were characterized by the
Urinary infection caused by Micrococcus subgroup 3

The presence of significant pyuria, and by bacterial counts clearly in excess of 10^4 colony-forming units per millilitre. The urine white cell count varied from 10 to 20 cells per high-power field (HPF) in two cases, 20 to 50 per HPF in three cases, 50 to 100 cells per HPF in two cases, 100 to 200 cells per HPF in one case, and more than 200 cells in two cases. The bacterial counts were mostly in the range 10^6 to 10^7 per millilitre. During the period of the investigations no 'doubtful' counts, between 10^4 and 10^5 per millilitre, of micrococci were encountered in urines from the nurses’ sick bay.

Twenty-three patients were studied, 10 with Micrococcus subgroup 3 and 13 with Escherichia coli infections. All the patients were women between 18 and 24 years old. The infections responded quickly to appropriate antibiotic therapy based on sensitivity tests, but the long-term results were not studied. The symptoms, including the severity of diurnal and nocturnal frequency, are shown in Table I. The prevalence of factors of possible aetiological importance is shown in Table II.

The two patients with Escherichia coli infections who had been catheterized had known congenital renal tract abnormalities and histories of repeated urinary infections. One woman had not been catheterized since childhood; the other had developed the reported infection immediately after catheterization. No patient with micrococcal infection was known to have a urinary tract abnormality. Only three women in this group had suffered previous infections; two had experienced only one previous episode and the third, eight previous infections, all directly related to sexual intercourse. Nine patients in the Escherichia coli group had suffered previous infections and six of these had had more than one past episode.

Table I

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Micrococcus Subgroup 3 Infection (10 Patients)</th>
<th>E. coli Infection (13 Patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of Patients</td>
<td>No. of Patients</td>
</tr>
<tr>
<td>Urgency</td>
<td>9 (90%)</td>
<td>12 (92%)</td>
</tr>
<tr>
<td>Incontinence</td>
<td>2 (20%)</td>
<td>4 (31%)</td>
</tr>
<tr>
<td>Urethral burning</td>
<td>9 (90%)</td>
<td>10 (77%)</td>
</tr>
<tr>
<td>Suprapubic pain</td>
<td>4 (40%)</td>
<td>5 (38%)</td>
</tr>
<tr>
<td>Loin pain</td>
<td>6 (60%)</td>
<td>8 (62%)</td>
</tr>
<tr>
<td>Macroscopic haematuria</td>
<td>3 (30%)</td>
<td>4 (31%)</td>
</tr>
<tr>
<td>Mean maximal diurnal frequency</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>Mean maximal nocturnal frequency</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Possible Predisposing Factor</th>
<th>Micrococcus Subgroup 3 Infection (10 Patients)</th>
<th>E. coli Infection (13 Patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catheterization</td>
<td>0 (0%)</td>
<td>2 (16%)</td>
</tr>
<tr>
<td>First symptoms within 5 days of sexual intercourse</td>
<td>5 (50%)</td>
<td>7 (58%)</td>
</tr>
<tr>
<td>Use of vaginal deodorant</td>
<td>3 (30%)</td>
<td>7 (58%)</td>
</tr>
<tr>
<td>Use of foam bath</td>
<td>0 (0%)</td>
<td>3 (23%)</td>
</tr>
<tr>
<td>Contraceptive pill</td>
<td>7 (70%)</td>
<td>8 (62%)</td>
</tr>
<tr>
<td>Vaginal discharge developing in previous 2 weeks or since onset of symptoms</td>
<td>1 (10%)</td>
<td>4 (31%)</td>
</tr>
<tr>
<td>Pruritis vulvae developing in previous 2 weeks or since onset of symptoms</td>
<td>4 (40%)</td>
<td>6 (46%)</td>
</tr>
<tr>
<td>Upper respiratory infection in previous 2 weeks or since onset of symptoms</td>
<td>3 (30%)</td>
<td>4 (31%)</td>
</tr>
<tr>
<td>Previous urinary infection</td>
<td>3 (30%)</td>
<td>9 (69%)</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Family history of renal disease or recurrent urinary infections</td>
<td>2 (20%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Antibiotics during last 3 months apart from treatment of present episode</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
</tbody>
</table>

Discussion

Until recently ‘coagulase-negative staphylococci’ isolated from urine and often reported as Staphylococcus albus have generally been considered to be contaminants. The present study confirms the observation of Mitchell and others that some of these organisms, notably those belonging to Micrococcus subgroup 3, can cause severe urinary tract infection. The infections resembled those due to Escherichia coli in the prevalence and severity of the usual symptoms and in their association with possible aetiological factors. Although the number of patients was small, the proportion of micrococcal infections was remarkably high, being almost equal to that of Escherichia coli infections. It has been reported that ‘coagulase-negative staphylococci’ urinary infections outside hospitals occur in outbreaks whereas the incidence within hospital does...
not vary (Maskell, 1971). It is impossible to assess
the relevance of this observation to nurses. Further
studies are needed to elucidate the pathogenesis of
micrococcal urinary infections, the subsequent
history, and the possibility that they might cause
renal disease.

I wish to thank Professor W. A. Gillespie and Dr
D. C. E. Speller, of the Department of Microbiology,
Dr D. G. H. Sylvester, Medical Officer to the Staff
Health Service, and Miss E. H. L. Duncan, Senior
Lecturer in Medical Statistics, University of Bristol,
for their advice, Mrs M. Stephens for technical
assistance, and the nurses of the United Bristol
Hospitals for their cooperation.

References
Albuquerque, Paulo, F., Forster, Rodolpho, F., Salles, Osmar, and
consecutive patients. J. Urol., 103, 205-209.

tellurite reactions of coagulase negative staphylococci and
Bailey, R. R., Gower, P. E., Roberts, A. P., and De Wardener, H. E.
nitrofurantoin. Lancet, 2, 1112-1114.
Baird-Parker, A. C. (1963). A classification of micrococci and staphy-
lococci based on physiological and biochemical tests. J. gen.
of Medical Bacteria. Cambridge University Press, Cambridge.
Acute infections of the urinary tract and the urethral syndrome
Mitchell, R. G. (1964). Urinary tract infections due to coagulase-
negative staphylococci. J. clin. Path., 17, 105-106.
(1969). Characterisation of Micrococcaceae isolated from clinical
Roberts, A. P. (1967). Micrococcaceae from the urinary tract in
Torres Pereira, A. (1962). Coagulase-negative strains of staphylococcus
possessing antigen 51 as agents of urinary infection. J. Clin.
Path., 15, 252-253.