Gentamicin as a selective agent for the isolation of beta haemolytic streptococci

WILLIAM A. BLACK1 AND FRANCES VAN BUSKIRK

From the Department of Microbiology, St Joseph's Hospital, London, Ontario, Canada

SYNOPSIS The isolation of beta haemolytic streptococci was compared using Columbia sheep blood agar with and without gentamicin in a final concentration of 5-5 micrograms per ml. The inclusion of gentamicin gave greatly improved results whenever the isolation of this organism in pure culture was complicated by overgrowth with Gram-negative bacilli and staphylococci.

The isolation of beta haemolytic streptococci from a mixed culture is a recurring problem. Although several selective media containing various inhibitors are already available all of these have their disadvantages. In an attempt to overcome some of the problems, a new medium containing gentamicin was prepared and evaluated in this laboratory.

Materials and Methods

MEDIUM

Preliminary trials compared Columbia blood agar base (Oxoid CM331) with Diagnostic Sensitivity Test agar (Oxoid CM261), sheep blood with horse blood in final concentrations ranging from 5 to 10%, and aerobic with anaerobic methods of incubation. Gentamicin was tested in final concentrations ranging from 2 to 8 µg/ml.

Complete inhibition of stock cultures of both staphylococci and Gram-negative bacilli, together with optimal colonial morphology and haemolysis of clinical isolates of beta haemolytic streptococci, was given by anaerobic incubation of Columbia blood agar base containing final concentrations of 10% sheep blood and 5-5 µg/ml of commercial gentamicin. This medium was used throughout the trial.

GENTAMICIN

Gentamicin powder supplied by the Schering Corporation and containing 53.9% active base was used initially. This was replaced before the trial by commercial gentamicin (Schering) containing 40 mg/ml to obtain a medium that could be prepared easily in any laboratory. Using sterile distilled water, a working dilution of 110 µg/ml was prepared which was stable for at least three months when stored at 4°C. This was added to the molten sheep blood agar base in a ratio of 1:20 to give a final concentration of 5.5 µg/ml.

EVALUATION OF THE TEST MEDIUM

During a 14-week period in which the laboratory received a total of 10770 specimens, 99 specimens showing beta haemolytic streptococci, in either pure or mixed culture, on the routine diagnostic plates were re-plated from the Amies transport medium (Bacto-0996) to gentamicin blood agar and a control sheep blood agar plate without gentamicin. The 99 specimens were selected from a total of 195 which contained beta haemolytic streptococci and included all the specimens heavily overgrowned by Gram-negative bacilli. The 96 specimens not assessed on gentamicin blood agar were either repeat specimens, pure cultures of beta haemolytic streptococci, or respiratory tract specimens. After overnight anaerobic incubation the plates were examined and the results noted.

STREPTOCOCCAL GROUPING AND TYPING

Streptococcal isolates were Lancefield grouped using a modification of the method of Rantz and Randall (1955). Griffith's typing was done at the National Streptococcus Typing Centre, Ottawa.

Results

An analysis of the specimens containing beta haemolytic streptococci together with the Lancefield grouping of the isolates is shown in table I.

The results of the main investigation are detailed in table II. Gentamicin blood agar proved most useful in separating beta haemolytic streptococci...
Gentamicin as a selective agent for the isolation of beta haemolytic streptococci

<table>
<thead>
<tr>
<th>Source</th>
<th>No. of Specimens</th>
<th>Lancefield Group</th>
<th>Beta Haemolytic Streptococcal Isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Sputum</td>
<td>771</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Nose</td>
<td>617</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Throat</td>
<td>820</td>
<td>29</td>
<td>6</td>
</tr>
<tr>
<td>Ear</td>
<td>89</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Wound swab</td>
<td>1379</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>Vaginal</td>
<td>390</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Total</td>
<td>4066</td>
<td>59</td>
<td>31</td>
</tr>
</tbody>
</table>

Table I Analysis of beta haemolytic streptococcal isolates by source and Lancefield group

from mixed culture with Gram-negative bacilli and staphylococci. Specimens taken from wound swabs and from the rectal area show beta haemolytic streptococci in pure culture, despite overgrowth of the control plates by Gram-negative bacilli, particularly Proteus. Gentamicin blood agar did not usually yield higher isolation rates of beta haemolytic streptococci in pure culture from upper respiratory tract specimens due to failure to inhibit much of the normal respiratory flora. It did prove valuable when the specimens contained staphylococci or Gram-negative bacilli.

With the exception of seven isolates all beta haemolytic streptococci grew on gentamicin blood agar. Six of the organisms which failed to grow, however, were presumably the same strain of Lancefield group A as they came from different members of one family and belonged to the same Griffith's type, namely, M23T23.

An additional five strains of beta haemolytic streptococci showed some inhibition of haemolysis or decrease in colonial size.

Discussion

As shown in table I, and as reported from other areas (British Medical Journal, 1970), streptococcal infection is still common. The provision of a satisfactory medium for the selective isolation of beta haemolytic streptococci is important as streptococci from sites other than the respiratory tract may be nephritogenic (Dillon, 1967) and Lancefield grouping

<table>
<thead>
<tr>
<th>Source of Specimen</th>
<th>Control Blood Agar</th>
<th>Gentamicin Blood Agar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of Specimens Showing Beta Haemolytic Streptococci (BHS)</td>
<td>Number of Specimens Showing BHS in Pure Culture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wounds (other than rectal area)</td>
<td>In pure culture</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>With Gram-negative bacilli</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>With staphylococci</td>
<td>10</td>
</tr>
<tr>
<td>Rectal area specimens</td>
<td>In pure culture</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>With Gram-negative bacilli</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>With staphylococci</td>
<td>2</td>
</tr>
<tr>
<td>Sputum</td>
<td>In pure culture</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>With Gram-negative bacilli</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>With staphylococci</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>With normal respiratory flora</td>
<td>22</td>
</tr>
<tr>
<td>Throat</td>
<td>In pure culture</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>With Gram-negative bacilli</td>
<td>2</td>
</tr>
<tr>
<td>Nose</td>
<td>In pure culture</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>With staphylococci</td>
<td>4</td>
</tr>
<tr>
<td>Ear</td>
<td>In pure culture</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>With Gram-negative bacilli</td>
<td>5</td>
</tr>
<tr>
<td>Vaginal</td>
<td>In pure culture</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>With Gram-negative bacilli</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>With staphylococci</td>
<td>3</td>
</tr>
</tbody>
</table>

Table II Comparison of gentamicin blood agar and the control plate in the isolation of beta haemolytic streptococci (BHS)

1 Provision.
2 Six of these isolates were from the same family and were of the same Griffith's type.
of streptococcal isolates must not be omitted or
delayed because of difficulty in separating strepto-
cocci from mixed bacterial cultures.

The relevant literature contains reports of un-
satisfactory performance of some constituents of
most of the existing selective media. Neomycin
(Elston, 1965; Blanchette and Lawrence, 1967),
colomycin (Ellner, Stoessel, Drakeford, and Vasi,
1966), sodium azide (Snyder and Lichstein, 1940),
or polymyxin (Kidson, 1967) fail to inhibit some
strains of Proteus which is the single most trouble-
some contaminant. Nalidixic acid (Beeren and
Tahon-Castel, 1966; Ellner et al., 1966; Cloutier-
Lambin and Gauvreau, 1968) fails to inhibit some
strains of staphylococci and Pseudomonas. Phenyl-
ethanol agar (Bacto 0504), which was formerly used
in this laboratory, alters the colonial morphology
and haemolysis of streptococcal isolates and permits
the survival of Proteus strains which reappear on
subculture. Polymyxin, neomycin, and fusidic acid
(PNF) medium (Kidson, 1967), in addition to failing
to inhibit some swarming Proteus strains, retards
the growth of some isolates. This latter medium
shares with others which contain multiple inhibitors
(Ellner et al., 1966; Cloutier-Lambin and Gauvreau,
1968) the disadvantages of being difficult to prepare
and to quality control.

Because of these difficulties, the use of a simple
medium containing gentamicin as a single selective
agent was considered. No references to this use of
gentamicin were found in the literature although
reports of the incorporation of this antibiotic in
tissue culture media (Rudin, Healey, Phillips, Glump,
and Forsyth, 1970) and in selective media for fungi
(Dolan, 1972) were noted. After extensive preliminary
investigations the final formula for gentamicin
blood agar was determined and a trial of the medium
instituted.

The results of this trial were satisfactory. Gentam-
icin blood agar completely inhibited all staphylo-
cocci and all Gram-negative bacilli with the ex-
ception of a single strain of Providence. Even the
optimal concentration of gentamicin did, however,
inhibit a small number of streptococci and this
would preclude the use of gentamicin blood agar as
a sole primary isolation medium. Over the last
year in this laboratory, gentamicin blood agar has
proved an excellent subculture medium for strepto-
cocci in mixed culture. In addition, it has increased
the isolation rate of beta haemolytic streptococci by
at least 30% when used as a supplementary primary
isolation medium for the examination of material
from sites where streptococci may be encountered
in mixed culture with Gram-negative bacilli or
staphylococci.

We are grateful to Dr J. F. Macdonald of the
Schering Corporation for advice and support.

References
nalidixique pour l'isolement des streptocoques. D. pneumoniae,
Blanchette, L. P., and Lawrence, C. (1967). Group A streptococcus
screening with neomycin blood agar. Amer. J. clin. Path., 48,
441-443.
Brit. med. J., 1, 513-514.
t'à l'acide nalidixique et à l'alcool β-phényléthylpyridine pour
l'isolement de bactéries à gram-positif. Rev. canad. Biol.,
27, 29-35.
18, 207-218.
Dolan, C. T. (1972). Effect of gentamicin on growth of yeasts,
like organisms, and Aspergillus fumigatus. Amer. J. clin. Path.,
57, 30-32.
Path., 45, 502-504.
Elston, H. R. (1965). Neomycin blood agar for the selective culture of
pneumococcus and certain other bacteria. J. Path. Bact., 90,
336-338.
Kidson, A. (1967). A new selective medium for Streptococcus pyogenes
haemolytic streptococci for serological grouping. Stain.
Snyder, M. L., and Lichstein, H. C. (1940). Sodium azide as an
inhibiting substance for gram-negative bacteria. J. infect. Dis.,
67, 113-115.