A new *E. coli* O group O158 associated with an outbreak of infantile enteritis

B. ROWE, R. J. GROSS, R. LINDOP, AND R. B. BAIRD

From the Salmonella and Shigella Reference Laboratory, Central Public Health Laboratory, Colindale Avenue, London, and Manor Hospital, Walsall, Staffs

SYNOPSIS An outbreak of acute diarrhoea occurred amongst babies in a special care baby unit. Thirteen babies were at risk; six suffered diarrhoea and three of these died. An *Escherichia coli* with an unidentifiable O antigen and flagellar antigen H23 was isolated from all six cases. This O antigen has been accepted into the international scheme as O158.

At the reference laboratory it is not uncommon to receive *Escherichia coli* strains which possess O antigens which are not included in the international serotyping scheme. If they are shown to be prevalent or appear to have a causal relationship to human or animal disease they may be established as test strains for new *E. coli* antigens (Orskov, Orskov, and Furowicz, 1972).

The Outbreak

The outbreak took place in a special care baby unit consisting of three small wards, but with no cubicles for isolation. The unit admits approximately 200 babies each year from neighbouring maternity units and occasionally admits babies born at home. Over the previous two years, mild outbreaks of diarrhoea caused the closure of the unit on several occasions. Some of these outbreaks were due to enteropathogenic *E. coli* belonging to O groups 26, 55, and 126; at the time of the present incident specimens of stool from all babies were routinely examined on the third day after birth and at weekly intervals thereafter.

At the onset of the outbreak the unit housed 13 babies. The first case of diarrhoea occurred on 7 May and was followed by two cases on 8 May and a further three on 9 May (table). Seven babies remained healthy. The six babies with diarrhoea were all born in the hospital. The clinical and epidemiological features of the outbreak suggested that the diarrhoea was infective and that cross infection was occurring within the unit. The unit was closed to

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Clinical Complications</th>
<th>Date of Birth</th>
<th>Date of Onset of Diarrhoea</th>
<th>First Date E. coli O158 Isolated</th>
<th>Severity of Diarrhoea</th>
<th>Treatment</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prematurity (34 weeks), Temporary lactose intolerance</td>
<td>2.5.72</td>
<td>7.5.72</td>
<td>9.5.72</td>
<td>Severe</td>
<td>Intravenous fluids; gentamicin</td>
<td>Recovered</td>
</tr>
<tr>
<td>2</td>
<td>Prematurity (34 weeks), Exomphalos repair, Peritonitis with terminal ileus</td>
<td>2.5.72</td>
<td>9.5.72</td>
<td>10.5.72</td>
<td>Severe</td>
<td>Intravenous fluids; gentamicin</td>
<td>Died 18.5.72</td>
</tr>
<tr>
<td>3</td>
<td>Prematurity (35 weeks), Caesarian section following failed induction of labour; respiratory distress syndrome</td>
<td>3.5.72</td>
<td>9.5.72</td>
<td>10.5.72</td>
<td>Severe</td>
<td>Intravenous fluids; gentamicin</td>
<td>Initial recovery; relapsed, died 25.5.72</td>
</tr>
<tr>
<td>4</td>
<td>Mild respiratory distress syndrome</td>
<td>5.5.72</td>
<td>9.5.72</td>
<td>10.5.72</td>
<td>Mild</td>
<td>Gentamicin</td>
<td>Recovered</td>
</tr>
<tr>
<td>5</td>
<td>Prematurity (33 weeks), Caesarian section for toxaemia</td>
<td>5.5.72</td>
<td>8.5.72</td>
<td>9.5.72</td>
<td>Severe</td>
<td>Gentamicin</td>
<td>Recovered</td>
</tr>
<tr>
<td>6</td>
<td>Caesarian section following failed forceps delivery; second of twins</td>
<td>5.5.72</td>
<td>8.5.72</td>
<td>11.5.72</td>
<td>Mild</td>
<td>Gentamicin</td>
<td>Recovered</td>
</tr>
</tbody>
</table>

Table **Clinical features in six cases of enteritis**
A new E. coli O group O158 associated with an outbreak of infantile enteritis

333

further admissions and healthy babies were discharged as soon as their clinical condition allowed. All babies in the unit were given gentamicin 3 mg per kg each day for five days.

Clinical Features

The diarrhoea was mild in two patients and severe in four. The four severely affected patients required intravenous fluids and three died. In two of these there was an initial response to treatment followed by relapse (table).

Bacteriology

The investigation of the outbreak included the examination of faecal specimens from all babies in the unit. Salmonellae and Shigellae were not found and E. coli were examined using the limited range of E. coli antisera available in the hospital laboratory. This range covered the common enteropathogenic O groups: O26, 55, 86, 111, 112, 114, 124, 125, 126, 127, 128, and 142. Because these O groups were not found representative cultures of E. coli from all babies were sent to the Salmonella and Shigella Reference Laboratory, Colindale, for serotyping using the complete serological scheme which covered E. coli O1 to O157. An E. coli with an unidentifiable O antigen but with flagellar antigen H23 was isolated from the faeces of all six cases and also from throat swabs of two of the fatal cases. A similar E. coli was isolated from faeces in five of the seven healthy babies. All strains gave the typical biochemical reactions of E. coli. The presence of the H23 antigen suggested that these strains might belong to the same serotype.

Using one of these strains as a vaccine, an O antiserum was produced in rabbits. By agglutination-absorption techniques all 13 isolates were shown to possess the same O antigen. The results suggested that this was a new O antigen and a strain was sent to the International Escherichia Centre, Copenhagen, where the findings were confirmed and the strain designated as E. coli O158.H23.

Discussion

The antigenic scheme for serotyping E. coli contains over 150 O groups and the scheme remains incomplete with new groups O being added from time to time. Evidence exists that infantile enteritis may be caused by E. coli serotypes from about 20 O groups (Taylor, 1961) and some of these have been found to be responsible for outbreaks of infantile enteritis in many countries. Hospital laboratories usually restrict their investigations to a limited range of O groups and in the United Kingdom this range remained for many years as O26, 55, 86, 111, 119, 125, 126, 127, and 128. As a result of serious outbreaks of infantile enteritis in Manchester in 1968 (Jacobs, Holzel, Wolman, Keen, Miller, Taylor, and Gross, 1970) and in Scotland in 1970 (Rowe and Gross, 1971) this range was extended to include E. coli O114 and O142. Recently many laboratories have included O18ac, 44, 112ac, and 124 and this final range forms a good practical compromise.

E. coli O114 and O142 were the causative agents for the Manchester and Scottish outbreaks and these were O groups which already existed in the antigenic scheme. A similar situation existed in the recognition of E. coli O91 as the causative agent in an outbreak in Winchester (Hughes, Greaves, and Bettelheim, 1968). The present outbreak differed in that the E. coli isolates from 11 babies could not be serotyped using the accepted scheme. However, the recognition by the reference laboratory that they possessed the H23 antigen suggested that a single epidemic strain was involved. These events illustrate the need for hospital laboratories to be supported by a national reference centre capable of undertaking the complete serotyping of E. coli.

The inclusion of E. coli O158 into the serotyping scheme will allow further surveillance by reference laboratories and an assessment of its prevalence and relationship to disease. In this outbreak the evidence is suggestive, but not conclusive, that E. coli O158 may be enteropathogenic; the fact that it was isolated from healthy babies does not preclude this. Until there is a reliable laboratory test, the association of particular serotypes with outbreaks remains an important indication of enteropathogenicity.

We are indebted to Mr J. Bullas of the Walsall Group Laboratory who was responsible for the original isolation of the strains, and to Drs I. and F. Ørskov of the International Escherichia Centre, Statens Seruminstitut, Copenhagen, who confirmed our serological findings and designated one of our isolates as the test strain for E. coli O158.

References