The distribution of muramidase (lysozyme) in human tissues

D. Y. Mason and C. R. Taylor

From the Department of Pathology, Gibson Laboratories, Radcliffe Infirmary, Oxford

SYNOPSIS The distribution of muramidase (lysozyme) in normal and pathological human tissues has been studied, using an immunohistological technique. The enzyme was demonstrated in a variety of healthy tissues, including serous salivary acinar cells, lactating mammary tissue, Paneth cells, renal tubular cells, myeloid cells (including eosinophils), and histiocytic cells.

In pathological tissues the most striking positivity was encountered in reactive histiocytic cells in granulomatous conditions such as tuberculosis and Crohn's disease.

The findings of this study are related to previous reports of the distribution of human and animal muramidase and the implications of patterns of muramidase staining in pathological histiocytes are briefly discussed.

In 1922 Alexander Fleming reported on a 'remarkable bacteriolytic' element found in tissues and secretions, and coined the name 'lysozyme' for this activity. It was subsequently established that lysozyme acts through the dissolution of N-acetylglucosaminyl-N-acetylmuramic acid linkages in the cell walls of susceptible microorganisms, and the synonym 'muramidase' is now widely used. The enzyme is present in easily detectable amounts in human milk, tears, saliva, and serum. Moderately elevated serum levels have been reported in cases of tuberculosis, sarcoidosis, and myeloproliferative diseases (Finch, Lamphere, and Jablon, 1964; Osserman and Lawlor, 1966; Catoovsky, Galton, and Griffin, 1971) while relatively enormous increases in serum and urine values are found in cases of leukaemia in which the malignant clone shows monocytic differentiation (Osserman and Lawlor, 1966). Serum muramidase in normal subjects and in patients with myeloproliferative disorders is thought to represent enzyme liberated from dying polymorphonuclear leucocytes (Fink and Finch, 1968), while the elevated levels in granulomatous diseases and in leukaemia appear to reflect liberation from, respectively, tissue histiocytes and from myelomonocytic cells (Catoovsky et al., 1971).

Muramidase in tears, saliva, and other secretions probably represents synthesis by glandular cells.

Attempts to localize the cellular origins of human muramidase have been hampered by the lack of a simple and accurate histological technique for detecting the enzyme. Methods hitherto described have either exploited the saccharolytic properties of the enzyme, using Micrococcus lysodeikticus or chitin as a substrate, or have relied on the use of labelled antibodies. Neither of these approaches has allowed full examination of muramidase distribution in human tissues (table 1). The former methods suffer from the disadvantage that the muramidase must still be enzymatically active when the tissue is tested, i.e., tissue must be fresh and unfixed. Immunological techniques, on the other hand, whilst not requiring the preservation of enzyme activity, are also considered incompatible with formalin fixation. Thus Asamer, Schmalzl, and Braunsteiner (1971) used alcohol-fixed blood and bone marrow smears, while Erlandsen and Parson (1973) and Sternberger, Hardy, Cuculis, and Meyer (1970a) examined respectively glutaraldehyde- and osmium-fixed tissues. Immunofluorescent techniques have the additional disadvantage of poor tissue and cellular morphology, particularly in comparison with the excellent histological results which can be achieved by immunoperoxidase methods (Taylor and Burns, 1974; Burns, Hambridge, and Taylor, 1974; Taylor and Mason, 1974).

The present report describes the use of immunohistological techniques for specifically staining human muramidase. These methods utilize peroxidase-conjugated antibodies, or immune complexes of peroxidase with rabbit antibody to peroxidase (PAP), and are applicable to all formalin-fixed.
paraffin-embedded tissues, even after prolonged storage. Preliminary studies by these methods have provided information on the distribution of muramidase in normal tissues and have revealed findings of particular interest in some disease states.

Materials

Tissues
Paraffin-embedded blocks of several different tissues were selected from the surgical histology files at the Radcliffe Infirmary. Tissues had been routinely processed on the laboratory Histokinette by the recommended schedule, using industrial methylated spirit and chloroform following adequate formalin fixation.

Blood Smears
Buffy coat smears were prepared from fresh EDTA samples of normal human blood, air dried, and fixed for five minutes in absolute ethanol.

Antimuramidase Antisera
Two antisera were used. The first was prepared by immunizing a rabbit with human muramidase isolated from the urine of a chronic monocytic leukaemic patient. After batch absorption of the urine with CM-60 Sephadex, and repeated washing of the Sephadex with 0·05 M Tris HCl buffer, pH 7·0, muramidase was eluted with 2 M Tris HCl buffer, pH 7·0. The resulting preparation of muramidase (MX 1) was dialysed extensively against distilled water, and freeze dried. Cellulose acetate and SDS-acrylamide gel electrophoresis showed a single homogeneous protein band. However, on Ouchterlony testing of concentrated MX 1, weak reactions were obtained with anti-IgG, anti-kappa, and anti-lambda antisera, indicating the presence of small amounts of polyclonal IgG. This contaminant was removed by column filtration through Sephadex G-75 giving a preparation (MX 2), which produced no reactions on Ouchterlony testing with anti-IgG, anti-kappa, or anti-lambda antisera.

A rabbit was immunized intramuscularly with MX 1 in complete Freund’s adjuvant on days 1 and 8 followed by a booster injection of MX 2 on day 83, with bleeding on days 92 and 97. The resulting pooled antiserum was tested by immunoelectrophoresis and found to contain a potent antibody to human muramidase, together with activity against human immunoglobulin. The latter component was removed by precipitation with purified human IgG, and an ammonium sulphate immunoglobulin fraction of the antiserum was prepared. Before use the antibody was absorbed twice with glutaraldehyde insolubilized normal human serum.

The second rabbit antimuramidase antiserum, together with all other antiserum used in the study, was obtained from Dakopatts A/S (UK agents, Mercia Diagnostics, Sandown Road, Watford, England). The PAP (peroxidase-anti-peroxidase complexes) was prepared by Dr Agnette Ingold of Dakopatts A/S according to Sternberger’s original method (Sternberger et al, 1970).

Methods

Serial sections were cut at 5 μ, dewaxed with xylol and processed to absolute alcohol (ethanol). Blood

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5 μ paraffin section—xylol—absolute ethanol</td>
</tr>
<tr>
<td>2</td>
<td>Block endogenous peroxidase with methanol containing 0·3% hydrogen peroxide: 30 minutes</td>
</tr>
<tr>
<td>3</td>
<td>Normal swine serum 1/20:10 minutes</td>
</tr>
<tr>
<td>4</td>
<td>Rabbit antimuramidase 1/10:30 minutes</td>
</tr>
<tr>
<td>5</td>
<td>Swine antirabbit serum IgG conjugated with horseradish peroxidase 1/20:30 minutes</td>
</tr>
<tr>
<td>6</td>
<td>Diamino-benzidine (D.A.B) reaction, counterstain with haematoxylin, dehydrate, mount in DPX</td>
</tr>
</tbody>
</table>

'All reactions carried out in Tris buffer (pH 7·6), washes after stages 2, 3, 4 and 5 in Tris saline (1/10 dilution of Tris buffer with normal saline). Stage 3 is optional and is designed to reduce unwanted 'background' staining.'
smears were allowed to dry after ethanol fixation and subsequently treated in the same way as tissue sections. All slides were transferred to absolute methanol containing 0-3% hydrogen peroxide in order to block the endogenous peroxidase activity (of granulocytes and red cells) which interferes with the interpretation of results (see Burns et al., 1974). The subsequent method is summarized in tables II and III.

All tissues were initially examined by the 'peroxidase conjugate' method (table II and Taylor and Burns, 1974). Those tissues in which results were equivocal were subsequently re-examined by the more sensitive PAP method (table III and Taylor, 1974). In this procedure the tissue-bound rabbit antiserum to muramidase (stage 4, table III) is linked to the rabbit antiserum against horseradish peroxidase in the PAP complex (stage 6, table III) by the intermediate addition of a swine antiserum to rabbit serum protein (stage 5, table III). Background staining was minimal by this method due to the intrinsic purity of the PAP, and the higher dilution factor of the antimuramidase antiserum.

Troublesome background staining in the peroxidase conjugate method may be reduced by pre-treatment of sections with normal swine serum. This reduces non-specific absorption of antiserum and avoids cross reaction with the swine anti-immunoglobulin antiserum used in stage 5. In order to facilitate comparisons between the different methods all sections were subjected to 'pretreatment' with normal swine serum (stage 3, tables II and III).

In addition, all sections showing positive staining with our antimuramidase antiserum, together with the majority of the 'negative' sections, were checked by the identical procedure using Dakopatts antimuramidase. In every case results were in agreement.

Table III *The PAP (peroxidase-anti-peroxidase immune complex) method*¹

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5μ paraffin section—xylol—absolute ethanol</td>
</tr>
<tr>
<td>2</td>
<td>Block endogenous peroxidase with methanol containing 0-3% hydrogen peroxide 30 minutes</td>
</tr>
<tr>
<td>3</td>
<td>Normal swine serum 1/20:10 minutes²</td>
</tr>
<tr>
<td>4</td>
<td>Rabbit antimuramidase 1/40:30 minutes</td>
</tr>
<tr>
<td>5</td>
<td>Swine antirabbit serum protein 1/20:30 minutes</td>
</tr>
<tr>
<td>6</td>
<td>PAP (peroxidase anti-peroxidase complexes) 1/20:30 minutes</td>
</tr>
<tr>
<td>7</td>
<td>Diamino-benzidine (DAB) reaction, counterstain with haematoxylin, dehydrate, mount in DPX</td>
</tr>
</tbody>
</table>

¹All reactions in Tris buffer (pH 7-6), all washes after stages 2, 3, 4, 5, and 6 in Tris saline.
²Stage 3 optional.
³DAB 3 3' diamino-benzidine tetrahydrochloride (BDH Chemicals, Poole, England) 6 mg in 10 ml of Tris buffer containing freshly added hydrogen peroxide 0-01%.

Controls

Serial sections of selected cases were subjected to the procedures presented in tables II and III, with the omission of each stage in turn. Also in every case examined by anti-muramidase, a parallel section was subjected to the identical procedure, except that rabbit anti-IgM antiserum was substituted for the rabbit anti-muramidase. There was no evidence of specific staining in any of these control preparations, other than occasional IgM-containing plasma cells.

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Muramidase Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal Tissue</td>
<td></td>
</tr>
<tr>
<td>Digestive system</td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>Negative</td>
</tr>
<tr>
<td>Small bowel</td>
<td>Paneth cells positive¹</td>
</tr>
<tr>
<td>Colon</td>
<td>Negative</td>
</tr>
<tr>
<td>Liver</td>
<td>Kupffer cells positive¹</td>
</tr>
<tr>
<td>Pancreas</td>
<td>Negative</td>
</tr>
<tr>
<td>Endocrine</td>
<td></td>
</tr>
<tr>
<td>Adrenal</td>
<td>Negative</td>
</tr>
<tr>
<td>Thyroid</td>
<td>Negative</td>
</tr>
<tr>
<td>Genitourinary</td>
<td></td>
</tr>
<tr>
<td>Testis</td>
<td>Negative</td>
</tr>
<tr>
<td>Ovary</td>
<td>Negative</td>
</tr>
<tr>
<td>Prostate</td>
<td>Negative</td>
</tr>
<tr>
<td>Kidney</td>
<td>Proximal tubular cells positive²</td>
</tr>
<tr>
<td>Mammary tissue</td>
<td></td>
</tr>
<tr>
<td>Non-lactating</td>
<td>Negative</td>
</tr>
<tr>
<td>Lactating</td>
<td>Positive¹</td>
</tr>
<tr>
<td>Musculoskeletal</td>
<td></td>
</tr>
<tr>
<td>Striated muscle</td>
<td>Negative</td>
</tr>
<tr>
<td>Smooth muscle</td>
<td>Negative</td>
</tr>
<tr>
<td>Myocardium</td>
<td>Negative</td>
</tr>
<tr>
<td>Cartilage</td>
<td>Negative</td>
</tr>
<tr>
<td>Lymphatic and haematological tissue</td>
<td></td>
</tr>
<tr>
<td>Lymph nodes</td>
<td>Positive</td>
</tr>
<tr>
<td>Spleen</td>
<td>Positive</td>
</tr>
<tr>
<td>Peripheral blood</td>
<td>Positive</td>
</tr>
<tr>
<td>Bone marrow</td>
<td>Positive</td>
</tr>
<tr>
<td>Respiratory system</td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>Alveolar lining cells and iron or carbon containing macrophages, negative</td>
</tr>
<tr>
<td>Integument</td>
<td></td>
</tr>
<tr>
<td>Skin</td>
<td>Mucus secreting cells negative</td>
</tr>
<tr>
<td>Pathological Tissue</td>
<td>Reactive</td>
</tr>
<tr>
<td>Granulation tissue</td>
<td>Positive</td>
</tr>
<tr>
<td>Fat necrosis</td>
<td>Positive</td>
</tr>
<tr>
<td>Tuberculosis, sarcoidosis, and Crohn's disease</td>
<td>Positive</td>
</tr>
<tr>
<td>Lipid-containing phagocytes</td>
<td></td>
</tr>
<tr>
<td>Xanthoma</td>
<td>Positive</td>
</tr>
<tr>
<td>Gaucher's disease</td>
<td>Positive</td>
</tr>
<tr>
<td>Histiocytoma</td>
<td>Negative</td>
</tr>
<tr>
<td>Giant cell tumour of tendon sheath</td>
<td>Negative</td>
</tr>
<tr>
<td>Eosinophilic granuloma</td>
<td>Positive</td>
</tr>
</tbody>
</table>

¹See text

Table IV *Distribution of muramidase in human tissues*
Incubation of the anti-muramidase antisera with a solution of purified muramidase completely abolished specific activity (see results).

Results

Morphological detail in all sections examined was excellent, equivalent to any orthodox haematoxylin-and -eosin paraffin section. Positive brown staining for muramidase clearly contrasted with the blue haematoxylin counterstain.

The results of testing a variety of human tissues for muramidase activity are given in table IV. At least two examples of each tissue have been examined.

All sections contained a variable number of positive polymorph leucocytes (both eosinophil and neutrophil), and these cells provided a useful positive control, demonstrating in each case that the technique was working satisfactorily. Tissues in which only granulocytes and the occasional scattered mononuclear cells (?) monocytes) stained for muramidase were classified in table IV as negative.

TISSUES CONTAINING MURAMIDASE

Small bowel

Positivity was confined to Paneth cells, all of which appeared to contain the enzyme. Activity was predominantly localized in the apex of the cells, where it outlined the membranes of the secretion granules.

Liver

Some Kupffer cells gave positive reactions, but an undefined proportion were clearly negative. There was no discernible pattern to the distribution of positive and negative cells.

Kidney

Proximal tubular cells were positive (fig 1). Tubular

Fig 1
Kidney. Epithelial cells of proximal tubule clearly positive (black) distal tubule negative. Cyan blue filter × 750.

Fig 2
Lacrimal glands. Positive (black) staining for muramidase in the majority of the glandular epithelial cells. Cyan blue filter × 750.
cells in the upper part of the descending limb of Henle's loop were less strongly positive, and the reaction disappeared as the loop progressed into the medulla.

Lacrimal glands
The majority of the glandular acini were strongly positive (fig 2). A few acini, and the ducts of the gland, contained no demonstrable muramidase.

Salivary glands
Mucous gland acini were consistently negative. In the accessory mixed-type glands underlying the buccal mucosa, 'caps' of serous cells were clearly positive (fig 3). The parotid gland, although an almost pure serous gland, contained no activity.

Bronchial glands
An appearance very similar to that of mixed salivary glands was seen, with positive serous 'caps' to many mucous acini.

Lactating breast
Many of the flattened epithelial cells lining dilated secretory acini were strongly positive (fig 4), as were the secretions within the acini. In all of these, acini negative cells could be found lying adjacent to morphologically identical muramidase-containing cells.

Cartilage
Faint diffuse granular staining of cartilage was observed, together with strong staining in lacunae.

Lymphatic tissue
The appearances varied greatly according to the degree of reactivity of the lymphoreticular tissue. In quiescent lymph nodes the small germinal centres...
were entirely negative. In addition, there was no
evidence of positive reaction in sinus lining cells or
in paracortical or sinus histiocytes.

In follicular hyperplasia a proportion of tingible
body macrophages showed distinct positivity, while
in other cases morphological ‘dendritic reticular
cells’ in the peripheral parts of the follicles appeared
positive. In sinus histiocytosis an increasing pro-
portion of sinus histiocytes showed positive staining
of marked intensity, and small aggregations of
histiocytes in paracortical areas showed similar
reactions. These features were observed in ‘derma-
topathic lymphadenitis’ and in lesser degrees of
non-specific histiocytosis.

The most marked positive reactions, however,
were seen in lymph nodes containing tuberculous or
Kveim-positive sarcoid lesions. An essentially
identical pattern of numerous strongly positive
epithelioid histiocytes and giant cells was seen in
both these conditions (fig 5). However it was always
possible, even in the most active granulomata, to see
negative cells of similar morphology.

In areas of healthy lymphoid tissue adjacent to
granulomata there were numerous strongly positive
smaller histiocytes, possibly migrating towards the
diseased regions.

Granulomata in samples of bowel affected by
Crohn’s disease were also found to contain numerous
strongly positive histiocytic cells.

Peripheral blood
In alcohol-fixed buffy coat smears intense cyto-
plasmic staining was apparent in all but a very few
neutrophils. Monocytes stained less strongly, and
in a proportion no enzyme was detectable.

Bone marrow
Sections of bone marrow revealed large numbers
of muramidase-positive cells. The majority of these
were morphological neutrophils, or eosinophils, or
recognizable segmented precursors. A proportion of
‘mononuclear’ cells were also positive, but it is not
yet clear whether these represent more primitive
granulocytic cells or monocytoid cells.

Granulation tissue
In granulation tissue from the base of a peptic ulcer
the majority of cells (including histiocytes and
fibroblasts) were negative. In areas where acute
inflammatory cells were present, a few histiocytes
showed granular positivity.

Fat necrosis
A minority of the giant cells found in association
with cholesterol clefts were faintly positive.

Lipid-containing phagocytes
A proportion of Gaucher’s histiocytes, and a few
giant cells in one of the two xanthomata examined
stained weakly and diffusely for muramidase. In the
latter instance the positive reaction for muramidase
was associated with other features of chronic
irritation, possibly the result of minor trauma.

Eosinophilic granuloma
The eosinophil polymorphs which are a striking
feature of this condition showed strong granular
positivity. In addition scattered foamy histiocytes
contained moderate amounts of the enzyme. The
majority of other histiocytic cells, which tended to be
smaller, were negative or very weakly positive.

SPECIFICITY OF MURAMIDASE STAIN
The antimuramidase antiserum was diluted 1/20 in
a 1-0 mg/ml solution of purified muramidase (MX 2),
and applied to several sections in which muramidase-
positive cells appeared to be numerous. In each case
the positive staining was completely abolished,
confirming the specificity of the reaction for muramidase.

Discussion

The present investigation confirms most of the previously reported work on the cellular distribution of human muramidase, in that normal myeloid and monocytic cells contained the enzyme. A single discrepancy lies in the fact that we found strong muramidase activity in mature eosinophils in tissue sections but not in blood films. This possibly reflects differences in the methods of processing for sections and smears. Three other reports have suggested that there is little or no enzyme in eosinophils in smears (Scholnik and Kass, 1973; Briggs, Perillie, and Finch, 1966; Syren and Raeste, 1971).

Studies of human muramidase (quoted in table 1) have been supplemented by investigations of muramidase activity in animal tissues, and the present survey may be considered in relation to this work. Because of the species antigenic specificity of muramidase, we have not been able to apply the immunoperoxidase technique to tissue of non-human origin.

Renal Tubular Cells

The enzyme has been demonstrated in rat and mouse proximal tubular cells (Glynn and Parkmann, 1964; Klockars and Osserman, 1974), a finding which was confirmed for man in the present study. The kidney is known to excrete muramidase readily into the glomerular filtrate, whence it is reabsorbed and catabolized by proximal tubular cells (Balazs and Roepke, 1966).

Lacrimal Gland

Fleming, in his original paper on muramidase, described powerful activity in human tears, and our present findings demonstrate that the majority of the secretory cells of the lacrimal gland are capable of muramidase synthesis. Scholnik and Kass (1973) had previously found muramidase activity in rabbit lacrimal glands. However, Klockars and Osserman (1974) discovered an apparent species difference in that rat lacrimal tissue was devoid of this enzyme.

Cartilage

Muramidase has been detected in chick and human rat cartilage (Kuettner, Eisenstein, Sobel, and Arsenis, 1971; Greenwald and Saigdera, 1971; Greenwald, Josephson, Diamond, and Tang, 1972). In all these studies muramidase was found to be extracellular. Kuettner et al (1971), using an immunofluorescent technique, showed localization around chondrocyte lacunae, an appearance similar to the pattern which we encountered in human cartilage. It is therefore possible that cartilage muramidase is not synthesized by the chondrocytes themselves, but taken up instead from tissue fluids. This concept is supported by the reports of Greenwald et al (1972) and of Eisenstein, Arsenis, and Kuettnet (1970) that exogenous muramidase, because of its strongly cationic charge, will bind to cartilage.

In contrast to these findings Klockars and Osserman (1974) could demonstrate no muramidase activity in rat cartilage.

Thyroid Tissue

A further discrepancy, also possibly species related, lies in the finding by Klockars and Osserman of muramidase in rat thyroid follicles. We could not demonstrate even weak activity in human thyroid sections.

Salivary Glands, Bronchial Glands, and Lactating Breast

We could find no record that muramidase has been detected in these organs previously, although both human saliva and milk have long been known to contain the enzyme. The observation that serous elements in the parotid were negative was of interest and accords with Klockars and Osserman's observation on rat parotid tissue.

Pancreas

We found no evidence of pancreatic muramidase activity, in contrast to the report by Speece (1964) that the enzyme is present in mouse pancreatic tissue.

Intestinal Cells

Paneth cells were found to be strongly positive in the present study, in accordance with the reports of Erlandson and Parson (1971) on human tissue, by Klockars and Osserman (1974) on rat small intestine, and by Ghoos and Vantrappen (1971) on mouse jejunum. The function of Paneth cells is unknown. Klockars and Osserman (1974) cite the large number of Paneth cells in the small intestine of the Brazilian ant-bear as evidence that they were originally evolved for the secretion of chitin-dissolving muramidase. An alternative view, that they function primarily as fixed phagocytes, is supported by the work of Erlandson and Chase (1972) in which rat Paneth cells were shown to be actively phagocytic for two different species of intestinal microorganism. Klockars and Osserman also reported that rat colonic and rectal epithelial cells contained muramidase. We initially found weak staining at intestinal epithelial surfaces by the peroxidase conjugate method. This method, however, is prone to give non-specific staining at tissue interfaces, and there...
The distribution of muramidase (lysozyme) in human tissues

was no suggestion of positivity using the more sensitive PAP method in which non-specific staining is greatly reduced.

MACROPHAGES AND HISTIOCYTES

It was apparent in this study that many histiocytes whether in hepatic, pulmonary, or lymphatic tissues, were negative for muramidase. These negative cells included such declared phagocytes as pulmonary ‘heart failure’ alveolar macrophages and carbon-containing histiocytes.

Those histiocytes or macrophages which were found to contain the enzyme fell into three categories:

1 **Morphologically unremarkable cells in normal tissues**

Scattered histiocytic cells in all tissues were occasionally strongly positive. Kupffer cells were the most frequently positive cells in this category.

2 **Storage, reactive, and giant cells**

A proportion of cells such as Gaucher’s cells, xanthoma cells, and giant cells in areas of fat necrosis contained muramidase. The reaction was always weak, however, and frequently at the threshold for detection of the enzyme.

3 **Epithelioid histiocytes, activated histiocytes**

The cells, exemplified by the histiocytes seen in sarcoid, tuberculous, and Crohn’s granulomata, were frequently strongly positive.

This triple hierarchy of positive cells suggests that muramidase may be synthesized predominantly in ‘reactive’ histiocytes, rather than in resting unstimulated phagocytes, or in cells which have ingested relatively bland substances such as lipid carbon particles or red cells. This concept is supported by Klockars and Osserman (1974) who reported negative staining in all the rat lymph nodes which they examined with the exception of a single para-aortic node in which germinal centre hyperplasia and sinus histioctosis were associated with the presence of many muramidase-positive histiocytes. There is further evidence for the hypothesis that muramidase is synthesized only by ‘activated’ histiocytes in the increased serum levels found in tuberculosis and sarcoidosis (Finch et al., 1964; Osserman and Lawlor, 1966) and also in the work of Cappucino, Winston, and Perri (1964) and of Glynn (1968) who demonstrated an increase in splenic muramidase in mice receiving BCG injections.

Conclusion

The technique described here may be of value in the study of the monocyte/histiocyte series in health and in disease. Possible clinical applications include the investigation of monocytic and myelomonocytic leukemias, particularly when the latter appears as a terminal event in cases of multiple myeloma (Andersen and Videbaek, 1970).

We are indebted to Miss Maria Hambridge for technical assistance, to Dr T. Parry and Mr T. Reed for their expert photographic work, and to Mrs J. Braidwood for typing the manuscript. Dr A. H. T. Robb-Smith has provided valuable advice and encouragement throughout. Miss Hambridge is supported by a grant from the Leukaemia Research Fund.

References

