Technical aspects of the radioimmunoassay of thyrotrophin

W. M. G. TUNBRIDGE, V. B. PETERSEN, AND D. R. WEIGHTMAN

From the Department of Medicine, Royal Victoria Infirmary, Newcastle upon Tyne

Since the early radioimmunoassays of serum thyrotrophin (TSH) (Odell, Wilbur, and Paul, 1965; Utiger, 1965) various technical refinements have led to assays of improved sensitivity, though few assays are capable of measuring subnormal levels of TSH (Patel, Burger, and Hudson, 1971; Hall, Amos, and Ormston, 1971). There are numerous variables in any radioimmunoassay but the important factors contributing to a successful assay are the quality of first antibody, the quality of labelled hormone, the assay conditions, the precipitation method, and not least the technical skill applied. These factors are reviewed here in relation to TSH, and the evidence that has led to our current technique is outlined.

Quality of First Antibody

There are two main animal sources; rabbit antihuman TSH available from the National Pituitary Agency (NPA) or the Medical Research Council (MRC) and guinea-pig antihuman TSH prepared locally. Franchimont (1972) has also reported the use of antibodies to porcine TSH which crossreact with human TSH but this reagent is not generally available.

Locally produced guinea-pig anti-TSH is used at a final dilution of 1:600 000 which produces 50-70% zero binding with reasonable sensitivity, and permits detection of TSH levels of the order of 0·5 to 1 μU/ml serum with a working range up to 50 μU/ml. Further dilution of the antisera may slightly improve the sensitivity of the assay but reduces the useful range of measurement.

Guinea-pig anti-TSH does not show significant crossreaction with luteinizing hormone (LH) or follicle-stimulating-hormone (FSH) at levels seen in postmenopausal women (fig 1). There is therefore no need to add HCG to the system as is necessary with NPA rabbit antihuman TSH.

Quality of Labelled TSH

The main source of TSH for iodination is the NPA preparation. A modification of the method of Hunter and Greenwood (1964) is used for iodination (see table I); 131I has been replaced by 125I which appears to produce a more consistent label, and 1 mCi 125I reacting with 5 μg TSH results in 85-95% incorporation with relatively little damage. Reducing the amount of chloramine T reduces the amount of damage and 10 μg is currently used. Exposure of 125I and TSH to chloramine T for several minutes at 4°C instead of 15 seconds at room temperature does not appear to improve labelling. The smaller the volume of the reaction mixture the less damage is produced, and current iodination volume is 40 μl after the addition of chloramine T. The reaction is stopped by the addition of 250 μg of sodium metabisulphite.

Separation of pure 125I-TSH from damaged protein and free 125I is carried out using a G-75

<table>
<thead>
<tr>
<th>Materials</th>
<th>Quantity</th>
<th>Volume (μl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPA TSH</td>
<td>5 μg</td>
<td>10</td>
</tr>
<tr>
<td>125I in 0·5M phosphate</td>
<td>1 mCi</td>
<td>20</td>
</tr>
<tr>
<td>Chloramine T</td>
<td>10 μg</td>
<td>10</td>
</tr>
<tr>
<td>Sodium metabisulphite</td>
<td>250 μg</td>
<td>100</td>
</tr>
</tbody>
</table>

Table I Iodination procedure
The laboratory assessment of thyroid function

determine the optimal incubation times before and after the addition of labelled hormone which produces maximum assay sensitivity. Short assays have practical advantages and the above times reflect a compromise which allows a reasonably short assay without undue loss of sensitivity.

Precipitation Method

Rabbit anti-guinea-pig second antibody is prepared locally but is also available commercially. The optimum titres of second antibody and guinea-pig carrier serum (used to bulk the precipitate) should be determined in each laboratory. The use of labelled gamma globulin to determine these titres may be misleading. It is better to determine the titre of the second antibody required to precipitate all the labelled hormone/first antibody complex (a) under assay conditions and (b) when excess first antibody is present. EDTA is added to bind calcium and prevent complement interfering with the second antibody reaction. Whether EDTA is added initially or with the second antibody does not appear to affect the assay.

Quality of Assay (Fig 2)

Standards and control sera are measured in triplicate. Several estimations of a control serum indicate the within-batch variation which should be less than 5%. Controls from common pools of sera of known TSH content are included in consecutive assays to determine the between-batch variation at various TSH levels. The sensitivity of an assay may be defined as the single smallest value whose fiducial...
The laboratory assessment of thyroid function

limits for $r = 0.05$ do not include zero. The most satisfactory assays can detect $0.5 \mu U$ TSH/ml serum. Over several assays the between-batch variation must be taken into account and the sensitivity is more commonly nearer $1 \mu U$ TSH/ml serum. TSH can be detected in 80% of normal volunteers and the normal range in these subjects is <1 to $4.0 \mu U$/ml. A study of a randomly selected normal population is currently being undertaken to define the normal range more accurately. Whilst this assay does not detect subnormal TSH levels it is very useful in the exclusion of the diagnosis of primary hypothyroidism and in the recognition of the various grades of thyroid failure (Evered and Hall, 1972; Evered et al, 1973).