useful tests on the basis of general availability and diagnostic discrimination are serum T3, T4, TSH, and technetium thyroid scanning. In a prospective study on 55 patients with suspected hyperthyroidism serum T3 was raised in all 46 toxic patients, T4 was raised in 83%, T3-uptake ratio raised in 78%, and two-stage (uptake × T4) FTI raised in 76%. A variety of kits measure T4 followed by a single stage or 'sequential FTI' which correlates well with free T4 concentration. However, in a trial on 100 patients the two-stage FTI was slightly superior to both the Ames Thyrolute sequential FTI or T4 alone (Howorth et al., 1975). Eight of 17 patients with solitary autonomous 'hot' nodules, as defined by scanning, were toxic with raised T3; five had a normal T4. Nine were euthyroid with normal T3 and T4. Patients receiving carbimazole for hyperthyroidism had normal or slightly low T4 and elevated T3 and TSH when euthyroid and very low T4, normal T3, and markedly elevated TSH when clinically hypothyroid. Euthyroid patients after therapy usually had normal T4 and TSH with minimally raised T3. Relapse occurred in 13 of 22 patients followed up for one year after carbimazole therapy. T3 measurements gave the earliest warning of relapse but T4 was adequate for routine follow-up since relapse was preceded by an elevated T4 (8 cases) or accompanied by it (3 cases). Biochemical hyperthyroidism preceded clinically apparent relapse for 12 weeks on average.

Red cell zinc and the zinc-metalloenzymes are promising tests of the peripheral metabolic effect of thyroid hormone. Red cell zinc and carbonic anhydrase B level fall in hyperthyroidism but a marked elevation in glyceraldehyde-3-phosphate dehydrogenase activity, which catalyzes the formation of 1:3 diphosphoglycerate, has been reported (Pangaro et al., 1974).


Models of immune complex diseases and the role of antibody affinity

M. W. STEWARD (Immunology Division, The Mathilda and Terence Kennedy Institute of Rheumatology, London) Several experimental models of human immune complex disease are currently being studied and can be classified into three main types: (a) those in which non-replicating antigens, such as serum proteins, are injected into animals to induce either an acute or chronic disease; (b) those in which the injection of replicating antigens, i.e., viruses, are used to induce immune complex disease in susceptible hosts; and (c) spontaneously occurring immune complex diseases of animals. The extent to which the study of these models has contributed to the understanding of the immunopathology of immune complex disease will be discussed. Discussion will also focus on the factors which affect the formation and clearance or deposition of immune complexes with particular reference to the role of antibody affinity in these processes.

Systemic lupus erythematosus and rheumatoid arthritis

G. R. V. HUGHES (Department of Rheumatology, Royal Postgraduate Medical School, Hammersmith) In both RA and SLE evidence for immune complex mechanisms is abundant. In RA, they are principally detectable within the synovial space and adjacent cartilage (measurement of synovial fluid complement levels is one of the few useful early diagnostic tests in RA), while in SLE circulating complexes as well as tissue-bound deposits are more frequent. However, despite the strong evidence obtained from immunofluorescence and elution studies, a number of questions remain unanswered. In RA, the factors concerned — genetic, antibody, affinity, chemical mediators, and rheumatoid factor — which result in the marked localization of complexes are not clearly defined.

In SLE, despite the strong evidence for DNA—anti-DNA complex involvement, the relative roles of other complexes such as denatured DNA—anti-d-DNA, lymphocytotoxins—'shed' lymphocyte antigen, RNA—anti-RNA virus-antivirus etc, as well as the reasons for varying disease patterns (e.g., CNS or renal lupus) are unclear.

Recently, detailed serial studies were carried out over a four-year period in the SLE unit on 38 patients with SLE. As well as the usual markers of disease activity including DNA-binding and haemolytic complement CH50 determinations, evidence for circulating complexes was regularly sought by electron microscopy, C1q precipitation, anticomplementary activity, and DNAase digestion of serum. C1q precipitins were detectable in 76% of 56 SLE patients and correlated poorly with disease activity. Anticomplementary activity was detected in 44 of 155 sera from 19 patients. Positive results correlated well with disease activity but were not confined to patients with renal disease.

DNAase digestion, suggested as a method for the detection of DNA—anti-DNA complexes, was significantly positive in only one patient, a child with aggressive renal lupus, in whom low MW complexes were detected. This technique may depend on antibody affinity and has major drawbacks.

The factors currently known to affect disease pattern and activity in SLE and RA are discussed.

Hepatitis B, immune complexes, and the pathogenesis of polyarteritis nodosa

A. J. ZUCKERMAN (Department of Virology, School of Hygiene and Tropical Medicine, London) Early studies have suggested that hepatitis B antigen immune complexes may play an aetiological role in the pathogenesis of some cases of polyarteritis nodosa. In collaboration with Trepo, Prince, and Bird (Trepo et al., 1974; Zuckerman, 1975) sera from 55 patients with histologically confirmed polyarteritis nodosa were tested for hepatitis B surface antigen and surface antibody by sensitive techniques. The surface antigen was detected by radioimmunoassay in 54-55% of the patients and there was an approximately equal distribution of subtypes ay and ay. Surface antibody was found by passive haemagglutination in 28% of the patients. Overall, 69% of the patients had either antigen or antibody in their sera and 11% had both.

Circulating immune complexes were found by electron microscopy in eight out of 27 patients, but no correlation was found between clinical and laboratory indicators of activity of polyarteritis and detection of circulating immune complex.

Seroconversion or the presence of an