Polyacrylamide gel disc electrophoresis of alkaline phosphatase isoenzymes in bone and liver disease

T. W. WARNES, P. HINE, AND G. KAY

From the Department of Gastroenterology, Manchester Royal Infirmary, Manchester M13 9WL

SYNOPSIS Acrylamide gel disc electrophoresis provides a reliable and reasonably rapid method of differentiating the raised serum alkaline phosphatase (AP) of bone origin from that of liver origin. The technique has been placed for the first time on a semiquantitative basis. Measurement of both band width and band position effectively distinguishes the bone from the liver isoenzyme, but band width provides superior discrimination.

An origin band was seen in none of the normal subjects and in only 7% of patients with bone disease but was present in 78% of patients with liver disease, a highly significant increase. Fifty percent of normal individuals had a small-intestinal band in serum taken two hours after a meal, as did 35% of patients with liver disease, but the incidence of intestinal bands in bone disease was only 11%, significantly less than in the other two groups. The genetic control of small-intestinal AP in serum has been confirmed, but it has been demonstrated that the decrease of intestinal AP in bone disorders is not genetically determined.

Following the first demonstration that serum alkaline phosphatase (EC 3.1.3.1) exists in more than one form, many attempts have been made to determine the organ source of this enzyme in health and disease by means of electrophoresis on a variety of media including paper, agar gel, cellulose acetate, starch gel, Pevikon C-870, and, more recently, acrylamide gel (Warnes, 1972). Most of these electrophoretic techniques reveal bone and liver components which are thought to comprise the main band, together with a third isoenzyme which is present in some individuals and which is identical with intestinal alkaline phosphatase, while a fourth isoenzyme which remains at the origin is frequently found in patients with liver disease. The results obtained by different techniques have often been conflicting. Thus some workers have claimed that the differentiation between bone and liver alkaline phosphatase can be made on the basis of the minor bands (Chian Mussi et al., 1962). In contrast, other workers have claimed to make the distinction between bone and liver enzymes by the position of the major bands, the liver band running slightly ahead of the bone band (Newton, 1967). The recent advent of polyacrylamide gel electrophoresis has been claimed to produce a clear and constant difference in both mobility and shape between the bone and liver bands (Smith et al., 1968; Walker and Pollard, 1971). However, even the use of this technique has yielded conflicting results. Kaplan and Rogers (1969) reported that, in their series, four patients with bone disease alone had a liver type main band, and in two of these there was no reason to suspect liver disease, while Sussman et al. (1968) found that the AP isoenzymes of liver, bone, kidney, and intestine all moved with indistinguishable mobilities. More recently, Afonja and Baron (1974) found that normal adult serum always contained a slow 'liver' band and sometimes a bone band. Many of the discrepancies are accounted for by the fact that interpretation of the results obtained by electrophoretic separation of the alkaline phosphatase isoenzymes in serum has until now been largely subjective.

We have therefore placed the technique of acrylamide gel disc electrophoresis of serum alkaline phosphatase isoenzymes for the first time on a semiquantitative basis. This has permitted the results obtained to be analysed statistically. Although intestinal alkaline phosphatase has been identified in serum electrophoretically, the incidence of gut bands in health and disease is a subject of controversy. Kaplan and Rogers (1969) found an intestinal band in fasting serum in only 2 out of 135 patients with a variety of bone and liver disorders, while Langman et al. (1966) reported that up to 60% of normal

Received for publication 30 December 1975
human sera contained a small-intestinal band on electrophoresis. The finding of raised levels of intestinal alkaline phosphatase in serum has been reported in cirrhosis of the liver (Fishman et al, 1965), but estimation of this isoenzyme in osteoblastic bone disease has not previously been reported.

Material and methods

The normal group comprised 28 healthy medical students with a mean AP of 4-8 King-Armstrong (KA) units/dl (table I). The liver disease group, which comprised 68 patients with proven liver disease and a raised serum AP, had a mean AP of 35-5 KA units/dl. The diagnosis of liver disease was based on clinical and laboratory findings, supplemented in most cases by liver biopsy, laparotomy or necropsy findings. The bone disease group consisted of 27 patients with a variety of osteoblastic bone disorders who had a mean AP of 35-2 KA units/dl. Several months after the electrophoresis had been completed, the hospital records were reviewed and the definitive diagnoses were recorded.

All blood samples were taken two hours after a hospital meal containing between 20 and 40 g fat. The assay procedure for alkaline phosphatase was the Kind-King modification of the King-Armstrong method (Kind and King, 1954). For a single estimation the 95% confidence limits were activity ± 2-3%.

Samples of serum were subjected to disc electrophoresis in a Shandon electrophoresis tank (Shandon Scientific Co Ltd, London) using a 5% polyacrylamide gel and a continuous buffer system (tris-borate buffer, pH 9-5), the method being basically that of Smith et al (1968). A 100 µl aliquot of serum was mixed with 200 µl of 20% sucrose, and 20 µl of this mixture was applied to the gel. Electrophoresis was continued until the bromphenol blue-albumin complex of a reference serum had reached the end of the index gel, the length of which was approximately 65 mm. The enzyme bands were located by a diazo-coupling technique, using β-naphthyl phosphate and Fast Blue BB. Band width was measured on serum diluted to give an AP value of 10-15 KA units/dl since preliminary observations showed that for any given serum an increased AP level resulted in an increase in band width. Each serum was also run undiluted, and the position of the bands on the gel was measured in millimetres from the origin. All measurements were made with a ruler to the nearest 0-5 mm. Band width and position were then expressed as a percentage of the length of the index gel, so producing modified 'Rf' values which could then be subjected to statistical analysis. The coefficient of variation for duplicates within a run was 1-6%, and between runs was 2-0%. All observations on intestinal AP were made on the undiluted sera.

The nature of the origin band was further investigated by gel filtration using Sephadex G200. Two-millilitre samples of serum obtained from a patient with obstructive jaundice were applied to a column 2-5 cm x 40 cm which was equilibrated with a tris-saline buffer, pH 8-0 (Tris 50 mmol/l, NaCl 100 mmol/l, adjusted with HCl 1 mol/l). Two-millilitre fractions were collected at a flow rate of 30 ml per hour, and the fractions were first assayed for alkaline phosphatase activity and then subjected to electrophoresis.

The ABO blood group and secretor status of each individual were determined by standard techniques (Dunsford and Bowley, 1967; Dacie and Lewis, 1968).

Results

On acrylamide gel disc electrophoresis intestinal and origin bands were seen in addition to the main band (fig 1). The main band seen in bone disease was diffuse and ran slightly behind the more compact liver band, while two main bands were always found in normal serum.

The main liver band was significantly faster than the bone band (table II); the faster band of normal serum (band I) did not differ significantly in position from the main liver band, and the slower band (band II) did not differ significantly in position from the bone and liver bands. The difference in width between the bone and liver bands was highly significant. Although there was a significant difference in both mean position and mean width, there was considerable overlap as regards position between the bone and liver bands (fig 2). Band width was a better dis-

<table>
<thead>
<tr>
<th>Group</th>
<th>No.</th>
<th>Mean AP ± 1 SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>28</td>
<td>4-8 ± 1-4</td>
</tr>
<tr>
<td>Liver†</td>
<td>68</td>
<td>35-5 ± 2-8</td>
</tr>
<tr>
<td>Bone‡</td>
<td>27</td>
<td>35-2 ± 2-2</td>
</tr>
</tbody>
</table>

Table I Composition of the normal, liver, and bone disease groups

†Cirrhosis of the liver (6), hepatitis (8), stones in the common bile duct (4), carcinoma of the extrahepatic bile ducts (2), primary carcinoma of the liver (3), secondary carcinoma of the liver (10), carcinoma of the gall bladder (1), carcinoma of the head of the pancreas (8), primary biliary cirrhosis (9), infiltrations of the liver (3), intrahepatic cholestasis (8), cholangiohepatitis (4), and gallstones (2)

‡Composed of 14 with Paget's disease of bone diagnosed on x-ray, 7 with osteomalacia diagnosed by x-ray and bone biopsy, 3 with rickets diagnosed clinically, biochemically and radiologically, 2 with hyperparathyroidism confirmed at operation, 1 with renal osteodystrophy
criminant since there was virtually no overlap between bone and liver.

Intestinal Bands
Fifty per cent of normal individuals were found to have a small-intestinal band in serum taken two hours after a meal, as also did 35% of patients with liver disease (table III). However, in the bone disease group the incidence of gut bands was only 11%, which is significantly less than in the other two groups.

Origin Bands
Table III also shows the incidence of origin bands in the three groups. The origin band was absent in all normal subjects, and was found in only 7% of patients with osteoblastic bone disease. It was, however, present in 78% of the patients with liver disease, a highly significant increase compared with the other two groups.

Gel Filtration
When serum from patients with liver disease was subjected to gel filtration, two peaks of AP activity were obtained. One eluted in the same peak as the 19S proteins and the other in the same peak as the 7S proteins. Subsequent electrophoresis of the two peaks of activity showed the 19S protein-like peak to contain the origin band while the 7S protein-like peak contained the main liver band (fig 3).

Blood Groups
The influence of the ABO blood group of a normal individual in determining the level of AP in his serum is seen in table IV. Normal subjects of blood group O or B have higher total levels of AP than those of blood group A, while within a given blood group there was a tendency for individuals who were secretor positive to have higher levels of AP than those who were secretor negative, the mean for group O secretor positive being 5.7 and for group O secretor negative 4.4 KA units/dl. On electrophoresis the higher levels of AP were associated with a higher incidence of intestinal bands, all seven subjects of blood group O who were secretor positive having an intestinal band. In five of these, the band was of medium intensity, and in two it was strong. In contrast, of the 10 normals who were group A secretor positive, only three showed an intestinal band.

In the bone group, however, genetic control appeared to be lost, since patients with blood group O had a lower mean AP than those of blood group A, and even when groups O and B were combined there was no significant difference between the mean AP of the combined group and that of patients with bone disease who were blood group A (table IV).

The distribution of blood groups observed in the normal, bone, and liver groups is summarized in table V. These figures are compared with the numbers which would be expected for the UK population (Kopec, 1970). It can be seen that in each group there is no significant difference between the observed and the expected values.

Discussion
This work helps to explain the discrepancies in the
Polyacrylamide gel disc electrophoresis of alkaline phosphatase isoenzymes in bone and liver disease

ELECTROPHORESIS

Fig 2 Band width and position on electrophoresis.

Table III Incidence of intestinal and origin bands in the normal, liver, and bone groups

<table>
<thead>
<tr>
<th>Group</th>
<th>No.</th>
<th>Intestinal Bands</th>
<th>Origin Bands</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No. Obs.</td>
<td>Percent</td>
</tr>
<tr>
<td>Normal</td>
<td>28</td>
<td>14</td>
<td>50</td>
</tr>
<tr>
<td>Bone</td>
<td>27</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>Liver</td>
<td>68</td>
<td>24</td>
<td>35</td>
</tr>
</tbody>
</table>

Student's t test

<table>
<thead>
<tr>
<th>Group</th>
<th>p</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal v bone</td>
<td>< 0.01</td>
<td>NS</td>
</tr>
<tr>
<td>Normal v liver</td>
<td>NS</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Bone v liver</td>
<td>< 0.05</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Our gel filtration results confirm the previous finding of Dunne et al (1967) that the origin band consists of a large 19S protein-like molecule which is fairly specific for liver disease. This macromolecule may be a complex formed by the linkage of an AP isoenzyme to lipoprotein (Moss, 1962), or it may represent a polymer, since it has been shown that precipitation of the lipoproteins from serum using results reported by different workers in that we have shown that both the main band and the origin band are of value in differentiating the elevated serum AP of osteoblastic bone disease from that of hepatic origin. Both the width and the position of the main band effectively separate the bone and liver isoenzymes, but band width appears to provide superior discrimination. Our results also suggest that in normal serum both bone and liver AP are present, the fast band (I) arising from liver and the slow band (II) from bone.

Our gel filtration results confirm the previous finding of Dunne et al (1967) that the origin band consists of a large 19S protein-like molecule which is fairly specific for liver disease. This macromolecule may be a complex formed by the linkage of an AP isoenzyme to lipoprotein (Moss, 1962), or it may represent a polymer, since it has been shown that precipitation of the lipoproteins from serum using results reported by different workers in that we have shown that both the main band and the origin band are of value in differentiating the elevated serum AP of osteoblastic bone disease from that of hepatic origin. Both the width and the position of the main band effectively separate the bone and liver isoenzymes, but band width appears to provide superior discrimination. Our results also suggest that in normal serum both bone and liver AP are present, the fast band (I) arising from liver and the slow band (II) from bone.

Our gel filtration results confirm the previous finding of Dunne et al (1967) that the origin band consists of a large 19S protein-like molecule which is fairly specific for liver disease. This macromolecule may be a complex formed by the linkage of an AP isoenzyme to lipoprotein (Moss, 1962), or it may represent a polymer, since it has been shown that precipitation of the lipoproteins from serum using results reported by different workers in that we have shown that both the main band and the origin band are of value in differentiating the elevated serum AP of osteoblastic bone disease from that of hepatic origin. Both the width and the position of the main band effectively separate the bone and liver isoenzymes, but band width appears to provide superior discrimination. Our results also suggest that in normal serum both bone and liver AP are present, the fast band (I) arising from liver and the slow band (II) from bone.

Our gel filtration results confirm the previous finding of Dunne et al (1967) that the origin band consists of a large 19S protein-like molecule which is fairly specific for liver disease. This macromolecule may be a complex formed by the linkage of an AP isoenzyme to lipoprotein (Moss, 1962), or it may represent a polymer, since it has been shown that precipitation of the lipoproteins from serum using results reported by different workers in that we have shown that both the main band and the origin band are of value in differentiating the elevated serum AP of osteoblastic bone disease from that of hepatic origin. Both the width and the position of the main band effectively separate the bone and liver isoenzymes, but band width appears to provide superior discrimination. Our results also suggest that in normal serum both bone and liver AP are present, the fast band (I) arising from liver and the slow band (II) from bone.

Our gel filtration results confirm the previous finding of Dunne et al (1967) that the origin band consists of a large 19S protein-like molecule which is fairly specific for liver disease. This macromolecule may be a complex formed by the linkage of an AP isoenzyme to lipoprotein (Moss, 1962), or it may represent a polymer, since it has been shown that precipitation of the lipoproteins from serum using results reported by different workers in that we have shown that both the main band and the origin band are of value in differentiating the elevated serum AP of osteoblastic bone disease from that of hepatic origin. Both the width and the position of the main band effectively separate the bone and liver isoenzymes, but band width appears to provide superior discrimination. Our results also suggest that in normal serum both bone and liver AP are present, the fast band (I) arising from liver and the slow band (II) from bone.

Our gel filtration results confirm the previous finding of Dunne et al (1967) that the origin band consists of a large 19S protein-like molecule which is fairly specific for liver disease. This macromolecule may be a complex formed by the linkage of an AP isoenzyme to lipoprotein (Moss, 1962), or it may represent a polymer, since it has been shown that precipitation of the lipoproteins from serum using results reported by different workers in that we have shown that both the main band and the origin band are of value in differentiating the elevated serum AP of osteoblastic bone disease from that of hepatic origin. Both the width and the position of the main band effectively separate the bone and liver isoenzymes, but band width appears to provide superior discrimination. Our results also suggest that in normal serum both bone and liver AP are present, the fast band (I) arising from liver and the slow band (II) from bone.

Our gel filtration results confirm the previous finding of Dunne et al (1967) that the origin band consists of a large 19S protein-like molecule which is fairly specific for liver disease. This macromolecule may be a complex formed by the linkage of an AP isoenzyme to lipoprotein (Moss, 1962), or it may represent a polymer, since it has been shown that precipitation of the lipoproteins from serum using results reported by different workers in that we have shown that both the main band and the origin band are of value in differentiating the elevated serum AP of osteoblastic bone disease from that of hepatic origin. Both the width and the position of the main band effectively separate the bone and liver isoenzymes, but band width appears to provide superior discrimination. Our results also suggest that in normal serum both bone and liver AP are present, the fast band (I) arising from liver and the slow band (II) from bone.

Our gel filtration results confirm the previous finding of Dunne et al (1967) that the origin band consists of a large 19S protein-like molecule which is fairly specific for liver disease. This macromolecule may be a complex formed by the linkage of an AP isoenzyme to lipoprotein (Moss, 1962), or it may represent a polymer, since it has been shown that precipitation of the lipoproteins from serum using results reported by different workers in that we have shown that both the main band and the origin band are of value in differentiating the elevated serum AP of osteoblastic bone disease from that of hepatic origin. Both the width and the position of the main band effectively separate the bone and liver isoenzymes, but band width appears to provide superior discrimination. Our results also suggest that in normal serum both bone and liver AP are present, the fast band (I) arising from liver and the slow band (II) from bone.
Table IV Influence of blood group on AP levels in normal and bone groups

(Three normals are included here whose sera were not electrophoresed. AP results are in King-Armstrong units/dl)

<table>
<thead>
<tr>
<th>Blood Group</th>
<th>Normal</th>
<th>Bone</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>Mean AP</td>
</tr>
<tr>
<td>O</td>
<td>11</td>
<td>5.37</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>5.70</td>
</tr>
<tr>
<td>AB</td>
<td>2</td>
<td>4.50</td>
</tr>
<tr>
<td>A</td>
<td>14</td>
<td>4.18</td>
</tr>
<tr>
<td>t test</td>
<td>O v A</td>
<td>P < 0.05</td>
</tr>
</tbody>
</table>

Table V Comparison of observed and expected distribution of blood groups in the normal, bone, and liver groups

<table>
<thead>
<tr>
<th>Group</th>
<th>O</th>
<th>A</th>
<th>B</th>
<th>AB</th>
<th>Total</th>
<th>χ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normals</td>
<td>11</td>
<td>14</td>
<td>4</td>
<td>2</td>
<td>31</td>
<td>2.909 NS</td>
</tr>
<tr>
<td>Bone</td>
<td>14.5</td>
<td>12.9</td>
<td>2.7</td>
<td>0.9</td>
<td>31.0</td>
<td>2.909 NS</td>
</tr>
<tr>
<td>Liver</td>
<td>8</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>16</td>
<td>0.8384 NS</td>
</tr>
<tr>
<td>Expected</td>
<td>7.9</td>
<td>7.1</td>
<td>1.5</td>
<td>0.5</td>
<td>17.0</td>
<td></td>
</tr>
</tbody>
</table>

Small-intestinal alkaline phosphatase, which is known to be an active role in the absorption of oleic acid (Linscher et al, 1971) it would be of interest to know whether the absorption of long chain fatty acids is reduced in patients with osteoblastic bone disorders. The finding of decreased amounts of small-intestinal alkaline phosphatase in patients with osteoblastic bone disorders is of great interest in view of the recent discovery that the intestinal isoenzyme is concerned with calcium absorption (Haussler et al, 1970). The small-intestinal tract of many species is known to contain a phytate-splitting enzyme, which is probably nonspecific alkaline phosphatase, the activity of which depends on cholecalciferol status (Wills, 1973). Since the presence of phytic acid in the diet reduces the availability of calcium for absorption by the precipitation of insoluble calcium salts within the lumen of the intestine, and phytic acid binds calcium as a complex (Søgnet, 1964), our finding of low levels of intestinal alkaline phosphatase in serum in osteoblastic bone disease may imply an associated malabsorption of calcium in these patients due to the inability to split phytate.

We acknowledge the support of Professor H. T. Howat during this project. We thank Professor S. W. Stanbury and physicians of the Manchester Royal Infirmary for access to their patients with bone disease; Mr. D. Cunliffe of the Blood Transfusion Laboratory, MRI, for the determination of blood groups and secretor status; Dr. R. Ollerenshaw.
Polyacrylamide gel disc electrophoresis of alkaline phosphatase isoenzymes in bone and liver disease

References

