A shorter immunoperoxidase technique for the demonstration of carcinoembryonic antigen and other cell products

EADIE HEYDERMAN AND A. MUNRO NEVILLE

From the Unit of Human Cancer Biology, London Branch, Ludwig Institute for Cancer Research in conjunction with The Royal Marsden Hospital, Sutton, Surrey SM2 5PX

SUMMARY A reliable immunoperoxidase schedule for the cellular demonstration of tumour and normal cell products which can be completed in well under two hours is described. The preparations are as clear and readable as those stained by routine histological techniques and should form a valuable adjunct in research and diagnostic studies.

The present study was set up to formulate a generally applicable schedule for the cellular demonstration of tumour index substances using routinely prepared histological material by a method which would also be reproducible and readable and allow simultaneous histological diagnosis. The carcinoembryonic antigen (Gold and Freedman, 1965) was used as the prime subject as high-quality reagents were available.

Materials

Six-millimicron sections of formalin-fixed paraffin-embedded material were used. Experiments on methodology were carried out using a moderately differentiated colonic adenocarcinoma and its lymph node metastases. Definitive carcinoembryonic antigen (CEA) studies were then made on 30 colorectal carcinomas, 12 mammary carcinomas, 6 prostatic carcinomas, and 12 non-Hodgkin’s lymphomas obtained at surgery or necropsy.

Goat anti-CEA serum (Darcy et al., 1973) absorbed with 10 mg/ml solubilised human colonic extract at a dilution of 1:200–1:400 and an indirect horse anti-goat peroxidase conjugate prepared by a modification (Birbeck and Robertson, unpublished) of the Nakane and Kawaoi (1974) method was used.

To compare the method with the peroxidase antiperoxidase (PAP) technique (Sternberger et al., 1970; materials from Dakopatts Ltd) experiments were carried out with rabbit anti-CEA serum. Neither of these antisera cross-reacts with CEA (Turberville et al., 1973).

Received for publication 24 June 1976

Method

The optimal method, shown in the Table, was reached after a series of experiments designed (1) to decrease the time-consuming nature of previously published methods (Primus et al., 1975), (2) to determine a suitable counterstain for histological diagnosis, (3) to decrease non-specific staining due to endogenous peroxidase and/or (4) heterophil antibodies, the stickiness of processed tissues, and proteinaceous reagents, and (5) to evaluate a control system. The principal problem encountered was related to the inhibition of endogenous peroxidase.

ENDOGENOUS PEROXIDASE STAINING

Neither 0·5% H2O2 in methanol (Streefkerk, 1972) nor 0·074% HCl in ethanol (Weir et al., 1974), nor a combination of the two, blocked endogenous peroxidase completely: phenylhydrazine, sodium cyanide, sodium azide, and potassium ferri cyanide were ineffective. Although complete inhibition could be achieved with 10% H2O2 in methanol (Burns, 1975), which has the advantage of bleaching acid haematin, endothelial staining remained a problem and could be abolished by 0·1 M periodic acid as a blocking agent. The increase in background which results from the creation of sticky aldehyde groups may be overcome by the use of sodium borohydride (Nakane method, personal communication). Other aldehyde blocking agents, such as lysine, are less effective or, like sodium dithionite, result in a loss of specific staining.

As bubbles of nascent hydrogen are produced by the borohydride which lifts sections with the utmost facility, the time (maximum 2 minutes) and concent...
Table Immunoperoxidase method

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dewax meticulously in xylene; take to water through alcohols.</td>
</tr>
<tr>
<td>2</td>
<td>2.28% (0.1 m) periodic acid in distilled water—5 min.</td>
</tr>
<tr>
<td>3</td>
<td>0.02%, fresh sodium borohydride in distilled water—2 min.</td>
</tr>
<tr>
<td>4</td>
<td>Wash off with phosphate buffered saline (PBS), then treat with non-immune serum 1:10 in 1% bovine serum albumin (horse, sheep or swine—see text)—5 min. Wash off with PBS.</td>
</tr>
<tr>
<td>5</td>
<td>Goat anti-CEA 1:400 or rabbit anti-CEA 1:50—15 min.</td>
</tr>
<tr>
<td>6</td>
<td>Horse anti-goat peroxidase conjugate or sheep anti-rabbit (diluted as required)—15 min.</td>
</tr>
<tr>
<td>7</td>
<td>Diaminobenzidine: 100 ml PBS; 50 mg DAB; 100 µl 30% H₂O₂ fresh—5 min.</td>
</tr>
<tr>
<td>8</td>
<td>Countertaint lightly with Mayer's haemalum, blue in lithium carbonate, wash in tap water.</td>
</tr>
<tr>
<td>9</td>
<td>Dehydrate, clear, and mount in Xam (Gurr).</td>
</tr>
</tbody>
</table>

To bleach haematin After Step 1 Cover with 7.5% H₂O₂ in distilled water—5 min. Wash off thoroughly.

Background Staining

This proved to be far less of a problem with the indirect immunoperoxidase method than with the PAP method which was more time-consuming and, in our hands, not significantly more sensitive. It was largely reduced by the use of avid high-quality antisera and pretreatment of sections with 1:10 non-immune serum from the species used to raise the second antibody.

Controls

The use of diaminobenzidine (DAB) alone, DAB + conjugate or normal sera at dilutions of 1:50 and above always resulted in a negative reaction. Hence we believe that the only truly reliable control method necessitates the use in parallel of antisera absorbed with the antigen being studied. Abolition of activity may also be confirmed by radioimmunoassay before and after absorption.

Results

CEA was demonstrated in all the colorectal carcinomas and their metastases (even when in bone and after calcification), irrespective of the degree of their histological differentiation. CEA was mainly confined to the brush border but was also intracellular in poorly differentiated carcinomas. Contrary to a previous study (Denk et al., 1972), but in agreement with others (Khoo et al., 1973; Huitric et al., 1976), focal CEA staining of the brush border of normal mucosal cells was found. In 10/12 mammary and 3/6 prostatic carcinomas, CEA was demonstrated either in the cytoplasm or on the membrane of luminal surfaces; none was noted in non-Hodgkin's lymphomas.

Using this technique, we have applied the method to the successful cellular demonstration in human tissues of calcitonin (medullary thyroid carcinoma), adrenocorticotrophic hormone (bronchial carcinoid), growth hormone (pituitary), human chorionic gonadotrophin (choriocarcinoma), fibrinogen (pericarditis), Australia antigen (liver), immunoglobulins (plasma cells), muramidase (lymph node histocytes), and α₁-antitrypsin (liver). Success was not achieved with antinuclear factor in formalin-fixed tissue.

Thanks are due to Mr Robertson who made the conjugates; to Mr J. Wilson who independently validated the methods; to Mr Birbeck and Mrs Cartwright for much help and valuable criticism; and to the staff of the Histopathology Department who cut the many sections required for the study.

References


