Methods for detection of hepatitis B surface antigen in paraffin sections of liver: a guideline for their use

E. SUMITHRAN

From the Department of Pathology, Medical Faculty, University of Malaya, Kuala Lumpur, Malaysia

SUMMARY Methods for the localisation of hepatitis B surface antigen (HBsAg) in paraffin sections of the liver include the detection of ground-glass hepatocytes and the use of Shikata's orcein stain, and of immunoperoxidase and immunofluorescent techniques. A comparative study of the different methods on 20 livers shows the orcein stain to be the method of choice for routine use. The Shikata stain is not only specific but is relatively inexpensive, easily performed, and stains out distinct cytoplasmic inclusions even in stored formalin-fixed livers, old paraffin blocks, and autolysed livers. Since HBsAg is irregularly distributed in the liver, adequate sampling is necessary to prevent false negatives; when sufficient tissue is available at least five blocks should be examined before a case is labelled as HBsAg-negative.

In recent years there has been a growing interest in the detection of hepatitis B surface antigen (HBsAg) in paraffin-embedded liver tissue. Methods for the localisation of HBsAg in paraffin sections of the liver include the detection of ground-glass hepatocytes in haematoxylin and eosin preparations (Hadziyannis et al., 1973) and the use of Shikata's orcein stain (Shikata et al., 1974) and of immunoperoxidase (Burns, 1975) and immunofluorescent (Akeyama et al., 1972) techniques. These methods have been invaluable as research tools in the retrospective detection of HBsAg in stored formalin-fixed livers and in old paraffin blocks containing liver tissue. They are also of value in clinical diagnosis. The specificity and reliability of the methods have previously been compared (Nayak and Sachdeva, 1975; Portmann et al., 1976) but few guidelines for their use are available.

We have used the above methods in retrospective studies on liver tissue from Malaysian Aborigines (Orang Asli) who have a very high incidence of primary hepatocellular carcinoma (Sumithran and Prathap, 1976) and have found attributes and deficiencies in all the methods. A major problem is that HBsAg may be sparsely distributed in the liver and fail to be detected unless an adequate number of blocks are examined. How many blocks constitute an 'adequate number' has not been established. In view of the great use being made of these methods for the detection of HBsAg, there exists a need for proper guidelines to their use. This paper, the result of a comparative study of the different methods, outlines suggestions for their use.

Material and methods

Twenty formalin-fixed cirrhotic livers from necropsied Orang Asli subjects were used in the study. Ten of the livers had associated primary hepatocellular carcinomas. Two livers, one of which contained a liver cancer, were badly autolysed: cell outlines were indistinct and nuclei were lost. The livers had been preserved in formalin for from one to 10 years. Paraffin blocks from all the livers made at the time of necropsy were available. The number of such blocks available from each liver ranged from two to five (average three).

Serial sections, 3 µm, were cut, and four consecutive sections from a ribbon were picked up on glass slides numbered 1 to 4. Slide 1 was stained by haematoxylin and eosin, slide 2 by orcein, slide 3 by the immunoperoxidase method, and slide 4 by the immunofluorescent method.

From each formalin-fixed liver 10 fresh square pieces of tissue were randomly taken from different areas. Each piece, measuring 1.5 x 1.5 x 0.3 cm in size, was blocked in paraffin. The 10 blocks from each liver were randomly tagged A to J. Serial sections, 3 µm, were cut from each block, and four consecutive sections from a ribbon were picked up on glass slides numbered 1 to 4. As before, the slides were stained by the four methods.

Received for publication 4 October 1976

460
Orcein staining was carried out using the method of Shikata et al. (1974). The deparaffinised sections were oxidised in a 0.15% solution of potassium permanganate and sulphuric acid (0.15 g KMnO₄ + 100 ml distilled water + 0.015 ml conc. H₂SO₄) for five minutes. (Oxidation gives good contrast in the final product.) The sections were then decolourised in 2% oxalic acid (10 minutes), washed in water, and placed in a 1% solution of orcein (BDH) in 70% alcohol at pH 1-2 (1 g orcein + 100 ml 70% alcohol + 2 ml conc. HCl) for four hours. The sections were finally differentiated in absolute alcohol, dehydrated in xylene, and mounted. Orcein-positive cells stain dark brown against a background of very light brown negative cells.

Immunoperoxidase staining was carried out by the indirect sandwich technique after endogenous peroxidase had been blocked by immersing the sections in methanol containing 0.3% hydrogen peroxide. Specific rabbit antiserum against HBₐAg (anti-Au/SH serum from Behringwerke AG, Germany) and a swine antirabbit immunoglobulin conjugated with horseradish peroxidase (obtained from Dakopatts AS, Denmark) were used. The tissue-bound peroxidase-conjugated antibody was stained with diaminobenzidine (DAB from BDH Chemicals, England).

Immunofluorescent staining was also carried out by an indirect technique using the same rabbit antiserum against HBₐAg as above and sheep antirabbit immunoglobulin tagged with fluorescein (Wellcome Research Laboratories, England).

Results

All the livers were found to contain HBₐAg on examination of multiple blocks (Table 1). There was little to choose from between the orcein stain and the immunoperoxidase method; each method distinctly stained out the positive areas. The HBₐAg-positive cells, when abundantly present, were readily appreciated by the immunofluorescent method, but when HBₐAg was sparsely present the background fluorescence made the few positive cells difficult to detect.

As previously described (Nayak and Sachdeva, 1975), the material which stained positively with the empirical orcein stain showed complete identity with that stained by the immunospecific methods. Localisation both within focal areas and in individual cells matched extremely well with those seen in the immunoperoxidase (Figs 1 and 2) and immunofluorescent preparations.

![Image 1](https://example.com/image1.png)

Fig. 1 Orcein-positive inclusions in hepatocytes (× 450)

![Image 2](https://example.com/image2.png)

Fig. 2 Immunoperoxidase-positive inclusions in section contiguous to that illustrated in Fig. 1 (× 450)

In less than one-half of the livers was HBₐAg so abundant as to be detected on examination of a single block. In some livers HBₐAg was confined to parts of small nodules. The number of positive cases increased as more blocks were examined (Table 2). On examination of one block per liver, only 45% of the livers were found to be positive. On examination of five blocks 95% of the livers were found to

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Number of livers showing ground glass, orcein, peroxidase, and immunofluorescent positive hepatocytes in relation to type of block examined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of block examined</td>
<td>Number of livers (total 20)</td>
</tr>
<tr>
<td>Stored paraffin (av. 3 per liver)</td>
<td>9</td>
</tr>
<tr>
<td>Fresh (10 per liver)</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Number of livers with HBₐAg-positive hepatocytes in relation to number of blocks examined</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of blocks examined per liver</td>
<td>No. of livers positive (total 20)</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
</tr>
</tbody>
</table>

J Clin Pathol: first published as 10.1136/jcp.30.5.460 on 1 May 1977. Downloaded from http://jcp.bmj.com/ on May 11, 2022 by guest. Protected by copyright.
contain HBsAg. The difference in the number of positive cases between the fresh blocks and stored blocks (Table 1) was probably due entirely to the greater number of the former.

The two extremely autolysed livers surprisingly contained material which stained strongly positive with orcein and the immunospecific methods (Figs 3 and 4).

Fig. 3 Autolysed hepatocytes (Haematoxylin and eosin \(\times 500 \))

Fig. 4 Orcein-positive inclusions in autolysed hepatocytes \((\times 500) \)

Although the orcein and immunologically stained material was present mainly in the noncancerous parenchyma of the livers with hepatocellular carcinoma, in two such livers small focal areas of tumour contained orcein, immunoperoxidase, and immunofluorescent-positive cytoplasmic inclusions, as has previously been described (Nayak and Sachdeva, 1975).

Typical ground-glass hepatocytes, as described by Hadziyannis et al. (1973), were present in only small numbers in 60% of the livers. The majority of hepatocytes with HBsAg-positive inclusions did not have a typical ground-glass appearance.

Discussion

HBsAg may be detected in hepatocytes using immunospecific methods or by the empirical orcein stain. There is complete identity between the material which stains positive with orcein and that stained by immunofluorescent and immunoperoxidase methods. Interference by background fluorescence decreases the value of the immunofluorescent technique, especially when HBsAg is sparsely present, but both the orcein and immunoperoxidase methods stain out the inclusions distinctly. Since the products of the latter two procedures are equally satisfactory, the very much lower cost of the orcein method and the relative simplicity of its technique make it the method of choice for the routine detection of HBsAg in fixed liver tissue.

The immunoperoxidase and immunofluorescent methods may, however, be useful for further studies on livers containing HBsAg. Nuclear staining has never been observed with orcein, and should the demonstration of hepatitis B core antigen become an important research or diagnostic tool, then immunospecific methods may have to be used. Ray et al. (1976) have found a number of different staining patterns by immunofluorescence in chronic hepatitis and in acute hepatitis, which may prove to be helpful in the histological diagnosis of different types of HBsAg-positive hepatitis.

HBsAg appears to be rather stable; neither formalin-fixation for several years nor paraffin-embedding seems to inactivate its antigenic determinants. Material used in this study has been in formalin or has been paraffin-embedded for up to 10 years. Shikata (1974) has stained specimens from patients with cirrhosis that have been in the files for as long as 50 years. Moreover, HBsAg is readily detected even in badly autolysed livers.

The ground-glass hepatocyte is little more than a useful diagnostic hint for the presence of HBsAg. It may occur in other conditions, such as drug-induced liver injury, cholestasis, and alcoholic hepatitis (Popper, 1975). These cells were present in small numbers in only 60% of livers carrying the hepatitis B surface antigen. The majority of hepatocytes with HBsAg-positive inclusions did not have a typical ground-glass appearance. Nayak and Sachdeva (1975), who also based their work on necropsy material, were unable to identify ground-glass hepatocytes in liver tissue containing orcein, immunoperoxidase, and immunofluorescent-positive hepatocytes. This observation differs from the findings of Portmann et al. (1976), who found
ground-glass hepatocytes in all the needle liver biopsies which were positive for HBsAg by immuno-fluorescence or orcein methods; the ground-glass cells corresponded well with those containing HBsAg. Their study, however, did not include postmortem material. The ground-glass appearance is thought to be due to an increase in the smooth endoplasmic reticulum of the affected hepatocytes. Since cell organelles autolysed fairly rapidly after death, it is possible that HBsAg-positive hepatocytes may lose their ground-glass appearance within a few hours of death. This may be the explanation for the paucity of ground-glass hepatocytes in necropsy material.

Owing to the irregular distribution of HBsAg in the liver, adequate sampling of tissue is required before a case is labelled as antigen-negative. When limited material is available, as in needle liver biopsies, the number of false negatives due to sampling error is likely to be very great. Examination of only one block from each liver resulted in more than 50% of false negatives. When a large amount of tissue is available, it is imperative that multiple blocks be examined before a case is labelled as antigen-negative. Examination of five 1-5 cm square blocks from each liver resulted in failure in detection of HBsAg in only one of the 20 livers.

In conclusion, for the routine detection of HBsAg in paraffin sections of the liver, Shikata’s orcein stain is the method of choice. It is not only specific but is relatively inexpensive and easily performed, and stains out distinct cytoplasmic inclusions even in stored formalin-fixed livers and old paraffin blocks. Autolysis does not invalidate orcein staining. Adequate sampling is necessary to prevent false negatives. When large amounts of liver tissue are available, at least five blocks should be examined.

References

Shikata, T. (1974). Australia antigen detected in the liver tissues which were obtained half a century ago. Hepatitis Scientific Memorandum, H655.
