Ribosome lamella complex in neoplastic cells of a Sézary's syndrome

G. SÉBAHOUN¹, J. BAYLE², R. MURATORE², AND Y. CARCASSONNE¹

From the ¹Blood Diseases Department, Hôpital de la Conception and the ²Department of Haematology, Faculté de Médecine, F. 13385—Marseille Cédex 4, France

SUMMARY The first case of ribosome lamella complex (RLC) is reported in abnormal cells of a Sézary's syndrome, a T cell malignancy. Until now this ultrastructural cytoplasmic inclusion has usually been described in hairy cell leukaemia and other lymphoproliferative syndromes of B cell origin. Since RLC are also observed in abnormal lymphoid T cells, in non lymphoid cells, and moreover in non haematopoietic cells, they lack diagnostic specificity.

Ribosome lamella complexes (RLC) are ultrastructural cytoplasmic structures described mainly in hairy cell leukaemia (Katayama et al., 1972; Daniel and Flandrin, 1974), more rarely in other haematopoietic disorders: chronic lymphocytic leukaemia (Zucker Franklin, 1963; Brunning and Parkin, 1975; Cawley et al., 1975; Woessner and Rozman, 1976), lymphosarcoma cell leukaemia (Anday et al., 1973; Djaldetti et al., 1974; Katayama and Schneider, 1977), Waldenström's macroglobulinaemia (Brunning and Parkin, 1975), malignant lymphoma (Reynes and Diebold, 1977), and acute monocytic leukaemia (Brunning and Parkin, 1975). Except for acute monocytic leukaemia, these are all lymphoproliferative syndromes of B cell origin (Siegal et al., 1978). Until now they have never been observed in Sézary cells, known to be lymphoid T cells (Brouet et al., 1973). This paper reports a case of Sézary's syndrome in which some proliferating cells were found to contain RLC.

Material and method

Electron microscopy was performed on blood cells from a 66-year-old man with generalised infiltrative...
Fig. 3 High magnification of Fig. 2 showing the ribosome lamella complex in cross-section.

Fig. 4 Electron micrograph of a Sézary's cell showing a ribosome lamella complex in longitudinal section.
erythrodernia, hyperpigmented skin, cervico-axillary lymphadenopathy, and hepatosplenomegaly. His white cell count was 18 × 10^9/l with 30% of Sézary cells (18% small cells and 12% large cells). The buffy coat was obtained from 10 ml heparinised blood and fixed in cold 1:25% phosphate-buffered glutaraldehyde, pH 7.3. Fixation was carried out for 30 minutes at room temperature. After washing in the buffer, postfixation in 1% osmic acid in the same buffer was performed at 4°C for 1 hour. After dehydration, the specimen was embedded in epoxy resin. Ultrathin sections were cut by means of ultramicrotome C Reichert Om U3. The sections, stained with uranyl acetate and lead citrate, were examined with a EM 201 Philips electron microscope.

Results

Sézary cells were easily recognised with their typical cerebiform nucleus (Fig. 1).

In a few Sézary cells (less than 1%), the cytoplasm contained one RLC (Fig. 2). This was a peculiar tubular cytoplasmic inclusion showing a lamella component separated by regular interlamellar spaces. These spaces were filled by a single row of ribosome-like round granules. The profiles of these complexes differed greatly from one section to another, and they were observed as concentric circles (Fig. 3) or parallel lines (Fig. 4) corresponding respectively to the cross or longitudinal sections of a cylindric system.

Discussion

RLC have been noted by several investigators in the pathological cells of at least 50% of the cases of hairy cell leukaemia (Katayama et al., 1972; Daniel and Flandrin, 1974), with a variable number of leukaemic cells containing one or several such inclusions (Daniel and Flandrin, 1974). Furthermore, these inclusions have been regarded as an ultrastructural marker of this disease (Katayama et al., 1972; Daniel and Flandrin, 1974). However, although infrequently, such inclusions were reported in the lymphocytes from six patients with chronic lymphocytic leukaemia (Zucker-Franklin, 1963; Brunning and Parkin, 1975; Cawley et al., 1975; Woessner and Rozman, 1976; Katayama and Schneider, 1977), three patients with lymphosarcoma cell leukaemia (Anday et al., 1973; Djaladet et al., 1974; Katayama and Schneider 1977), one patient with Waldenström's macroglobulinaemia (Brunning and Parkin, 1975), and one patient with follicular malignant lymphoma (Reynes and Diebold, 1977), all diseases known to be of B cell nature (Siegel et al., 1978). They were also described in non lymphoproliferative disorders, such as two cases of acute monocytic leukaemia (Brunning and Parkin, 1975) as well as non haematopoietic diseases, such as an adrenal cortical adenoma from a patient with Cushing's syndrome (Hoshino, 1969) and in cells from other mammals and plants (Bartels and Weier, 1967; Bulger, 1968).

The RLC probably originate from the rough endoplasmic reticulum (Hoshino, 1969; Brunning and Parkin, 1975) but their significance in protein synthesis is unknown.

This description of RLC in abnormal cells of Sézary's syndrome, a T-lymphocyte neoplasm, and its occasional presence in non haematopoietic cells indicates that RLC lacks diagnostic specificity.

We are indebted to Mr. G. Charmasson for excellent technical assistance.

References

Requests for reprints to: Dr G. Sébahoun, Clinique des Maladies du Sang, Hôpital de la Conception F. 13385, Marseille, Cédex 4, France.

Reports and Bulletins prepared by the Association of Clinical Biochemists

The following reports and bulletins are published by the Association of Clinical Biochemists. They may be obtained from The Publishing Department, British Medical Journal (ACB Technical Bulletins), B.M.A. House, Tavistock Square, London WC1H 9JR. Overseas readers should remit by British Postal or Money Order.

SCIENTIFIC REVIEWS (price £1.00/$2.00 each)

1. The assessment of thyroid function March 1971 F. V. Flynn and J. R. Hobbs

3. Biochemical tests for the assessment of feto-placental function May 1975 C. E. Wilde and R. E. Oakley

4. Test of exocrine pancreatic function March 1977 A. H. Gowenlock

5. Assay of cholinesterase in clinical chemistry March 1979 Elsie Silk, J. King, and Mary Whittaker

TECHNICAL BULLETINS (price £1.00/$2.00 each)

23. Interchangeable cells for spectrophotometers and fluorimeters September 1971 S. S. Brown and A. H. Gowenlock

27. Assessment of pumps suitable for incorporation into existing continuous flow analytical systems November 1972 A. Fleck et al.

31. Determination of uric acid in blood and in urine July 1974 R. W. E. Watts

32. A survey of amino acid analysers readily available in the United Kingdom September 1974 J. E. Carlyle and P. Purkiss

33. Definitions of some words and terms used in automated analysis November 1974 A. Fleck, R. Robinson, S. S. Brown, and J. R. Hobbs

34. Measurement of albumin in the sera of patients January 1975 Linda Slater, P. M. Carter, and J. R. Hobbs

35. Investigation of the validity of temperature correction factors for serum aspartate and alanine transaminases March 1975 S. B. Rosalki et al.

36. Factors influencing the assay of creatinine November 1975 J. G. H. Cook

37. A survey of enzyme reaction rate analysers readily available in the United Kingdom July 1977 R. A. Saunders and R. F. Burns

38. Transport of specimens for clinical chemistry analysis November 1977 P. Wilding, J. F. Silva, and C. E. Wilde

39. A scheme for the evaluation of diagnostic kits May 1978 P. H. Lloyd