Technical methods

Storage of reagent platelets for anti-platelet antibody testing in the 51Cr platelet lysis assay

G. E. LIZAK and F. C. GRUMET Transfusion Service, Stanford University Hospital, Stanford, California, USA

The 51Cr platelet lysis assay (Aster and Enright, 1969) is a clinically useful test for detecting specific anti-platelet antibodies and anti-drug antibodies that interact with platelets. In a clinical laboratory setting, it is extremely useful to have available a method of long-term platelet storage for use in this assay. This is especially true when platelets from rare PlA1 negative donors or from paroxysmal nocturnal haemoglobinuria (PNH) patients are needed as test reagents. We describe a rapid and simple technique for freezing platelets that may be used as reagents in the 51Cr release test system.

1EDTA Vacutainer Tubes, B&D.
2ACD Vacutainer Tubes, B&D.

Received for publication 23 June 1978

Testing followed the procedure of Cimo et al. (1977). In brief, platelets were isolated from EDTA anticoagulated whole blood,1 labelled with 51Cr, treated with bromelain, and reacted with antisera. Fresh human serum was added as a source of complement, and after a 2-hour incubation the reaction was stopped by the addition of 0-5% EDTA in saline. This mixture was centrifuged, and by counting an aliquot of supernatant and the button in a gamma scintillation counter, the percentage of released 51Cr was calculated.

To determine the constraints of sample acquisition, the effect of holding the EDTA sample at room temperature (22-24°C) before platelet separation and testing was evaluated. As seen in Fig. 1, it was possible to hold blood samples for up to three days before testing without loss of the ability to identify the PlA1 antigen. It was also noted (data not cited) that fresh acid citrate dextrose (ACD) anticoagulated blood2 was as acceptable as fresh EDTA blood; however, room temperature storage of ACD blood was not evaluated.

EDTA anticoagulated whole blood up to 3 days old was used to prepare platelets for freezing. Platelets were separated from the specimens by centrifugation in a Sorval RC-3 at 300 g for 10 minutes at room temperature. The platelet-rich

Fig. 1 Effect of room temperature storage of EDTA whole blood before platelet separation and testing. Platelets from four different PlA1 positive donors were tested with a 1:2 dilution of anti-PlA1 antiserum. Vertical bars represent the range of % lysis of platelet preparations from four subjects tested up to 4 days of age. The negative control range was determined by testing six normal sera: ○ anti PlA1 serum; □ normal control serum. Vertical bars indicate range.
plasma was centrifuged at 2300 g for 7 minutes at room temperature, and the platelet-poor plasma was discarded. Platelet buttons were resuspended to 10^9/ml in 5 % dimethyl sulfoxide in heat-inactivated fetal calf serum on ice. The resuspended platelets were then placed in Beckman microfuge tubes and placed in a -76°C freezer. Thawing took place by allowing the platelets to come to room temperature (22-24°C), and then washing with platelet wash solution (Silvergleid et al., 1977). Washed platelets were resuspended in phosphate-buffered saline at 10³/ml. In Fig. 2, it is seen that frozen platelets were equivalent to fresh platelets in the detection of the PlA¹ antigen. Also PlA¹ negative platelets were still non-reactive after the freezing and thawing process. Platelets from a PNH patient were frozen (at 48 hours of age) and thawed (three months after freezing) following the above procedure. Testing using anti-PlA¹ serum showed a titre of 16 against frozen platelets from the PNH donor and a titre of 4 against frozen bromelain-treated normal platelets. Testing using an anti-quinidine antibody indicated a titre of 64 with the same frozen platelets from the PNH donor and a titre of 16 with frozen bromelain-treated normal platelets. These data support Aster’s earlier reports of the increased sensitivity of platelets from PNH patients as test reagents for some anti-platelet antibodies (Aster and Enright, 1969). Bromelain-treated normal platelets from four subjects were thawed after 8-12 months’ storage at -76°C. The platelets showed the same titres with anti-PlA¹ sera (4) as they did when tested fresh. They also showed the same titres (16) with anti-quinidine antibody, frozen versus fresh. These data demonstrate that freezing platelets for use in the 51Cr release assay is a feasible and simple technique. The availability of stable reagents should permit greater utilisation of this clinically useful test for anti-platelet and platelet interreactive anti-drug antibodies.

We are grateful to Dr Richard Aster and Nancy Szatkowski for their help and advice in setting up this assay, and to Mary Zimmerman and Edith Davis for secretarial assistance.

References

Requests for reprints: to Dr F. C. Grumet, Transfusion Service, Room P1099, Stanford University Medical Center, Stanford University Hospital, Stanford, California 94305, USA.