cells never manifested similar morphology. Trophozoites grown in culture had a similar appearance when stained.

The extreme rarity of Naegleria meningoencephalitis and the similarity of its clinical presentation to that of bacterial meningitis make it impractical to perform wet mount examinations as a routine procedure in the study of spinal fluid. Although the appearance in wet mounts is highly characteristic, nevertheless most cases have not been diagnosed before death and survival has been rare (Duma, et al., 1971; Lancet, 1977; Willaert, 1974).

Since the appearance in smears stained to demonstrate bacteria appears to be distinctive, it is suggested that observance of morphologically similar structures should be sufficient to mandate wet mount study and culture, as well as additional questioning for pertinent history. Definitive treatment may then be initiated earlier, with possible improvement in the survival rate.


References


Flucloxacillin in bone

Although not detracting from the findings concerning flucloxacillin levels in serum and bone (Unsworth et al., 1978), we question the advisability of stating that the commonest organisms causing deep infection in prosthetic hips are coagulase-positive and -negative staphylococci (Visuri et al., 1976). Our experience and other people’s findings show that a variety of bacterial species may be isolated from infected prostheses. From 42 infected hip cases collected over three years (Fitzgerald et al., 1977), 18 staphylococcal strains were isolated, the remainder being a mixture of common pathogens but including 10 anaerobic strains, eight being peptococcal species. In this hospital, eight infected hips collected over two years yielded four anaerobic species, three coliform organisms, and only one Staphylococcus aureus. In each case the organisms were isolated in pure culture.

Whether anaerobic species have figured more prominently in recent reports is because interest and awareness has alerted bacteriologists of their likely presence, or whether prophylactic measures directed against staphylococci are sufficiently effective to eliminate them but not other species, remains to be determined. Meanwhile it is perhaps judicious to consider prophylaxis in the knowledge that a wider range of organisms than staphylococci is frequently implicated in the infection of prostheses.


We have found levels of flucloxacillin in bone after an intramuscular injection similar to those reported by Unsworth et al. (1978).

However, we should like to point out that although coagulase-positive and -negative staphylococci are frequently encountered in deep infections after total hip replacement, they are by no means the only organisms isolated.

In our experience, in reviewing 310 total hip replacements in which there was a 5% deep infection rate, we found both Gram-positive and Gram-negative organisms present in the hip joint at the time

Fig. 2 Low-power view of centrifuged spinal fluid stained with Wayson’s stain. Arrows point to two Naegleria trophozoites. Note absence of nuclear staining, white neutrophil nuclei stain dark purple (black). (× 190)

Fig. 3 High-power view showing characteristic appearance of amoebic trophozoites in spinal fluid when stained with Wayson’s stain. Slightly irregular shape, size slightly greater than neutrophil, vacuolated cytoplasm, and absence of nuclear staining distinguish from inflammatory cells. (× 435)
of surgery (Benson and Hughes, 1975). In the orthopaedic literature there have also been two large series reporting similar results (Fitzgerald et al. 1973; Hunter and Dandy, 1977). In the latter article 34% of the isolates in patients with deep infection after total hip replacement were organisms unlikely to be sensitive to flucloxacillin.

Hence, in our opinion, a broad-spectrum antibiotic seems to be more appropriate as a means of prophylaxis in patients undergoing total hip replacement, particularly after previous surgery.

SEAN HUGHES
Orthopaedic Unit, Department of Surgery, Royal Postgraduate Medical School, Hammersmith Hospital, Du Cane Road, London W12 OHS, FELICITY ANDERSON Edgware General Hospital, Edgware, Middlesex,

The author has commented as follows:

In our paper we stated that staphylococci are the commonest organisms causing deep infection in hips with prostheses, but not the only organisms. The reference quoted by Dr Cook and Mr Fincham (Fitzgerald et al., 1977) makes this very point: 18 staphylococci out of 42 means that the staphylococci are actually the commonest.

Mr Hughes and Dr Anderson quote Fitzgerald et al. (1973), who at that time reported either Staph. aureus or Staph. epidermidis alone in four of seven superficial wound infections and three of seven deep infections Hunter and Dandy (1977), whom they also quote, reviewed 137 deep infections: 43 of 119 isolates were Staph. aureus and a further 36 Staph. albus—that is, 66%. While I agree that other organisms would be most unlikely to be sensitive to flucloxacillin, I wonder which single broad-spectrum agent would cover all the organisms predictably, especially in the context of spreading aminoglycosides resistance among Gram-positive and Gram-negative organisms.

Although I fully accept that the study of other antibiotics to cover organisms other than staphylococci is highly desirable, I believe no one of them is likely to cover staphylococci more effectively than does flucloxacillin.

IAN PHILLIPS
Department of Microbiology, St Thomas’ Hospital Medical School, London SE1 7EH

References


This book should appeal to a wide readership. The chapters, which are the proceedings of a symposium, do not have a common topic but the linking theme is that each consists of an extensive review of a recent advance in clinical microbiology. It also lives up to its title of ‘New Perspectives’ by, for instance, having the chapter on infection in leukaemia contributed by a haematologist, while the one on collaboration with the laboratory, written by a clinician, should be an encouragement to any microbiologist.

There is excellent cover of the many factors that influence the efficiency of