Serum γ-glutamyltransferase isoenzymes in extrahepatic biliary obstruction

P. R. WENHAM1, C. P. PRICE2, AND H. G. SAMMONS

From the Department of Clinical Chemistry, East Birmingham Hospital, Bordesley Green East, Birmingham B9 5ST, UK

SUMMARY The γ-glutamyltransferase isoenzymes in the sera of patients with extrahepatic biliary obstruction have been studied, using electrophoretic, gel filtration, and ultracentrifugation techniques, and compared with those present in normal sera. Five isoenzymes were shown to exist in patients' sera, three of which were not demonstrated in normal sera. The observations are discussed in relation to the influence of biliary regurgitation and the possible solubilisation of membrane-bound enzymes. The results are compared with those of previous studies on alkaline phosphatase.

The elevation of γ-glutamyltransferase (γGT) (E.C.2.3.2.2) activity in the sera of patients with obstructive liver disease is well documented, but the reason for the change is unknown. It has been suggested that the liver normally eliminates the enzyme into the bile, but when the bile duct is obstructed this process results in the accumulation of the enzyme in the blood (Szczeklik et al., 1961; Orłowski, 1963; Rutenburg et al., 1963; Lukasik and Richterich, 1965; Whitfield et al., 1972). The possibility of the bile being an excretory route for γGT produced from non-hepatic sources has also been considered (Krysiewski et al., 1973).

Previous work has shown that the rise in serum alkaline phosphatase (E.C.3.1.3.1) observed in biliary obstruction may in part arise by regurgitation of the biliary enzyme (Price and Sammons, 1974). A study of the isoenzymes of γGT in the sera of patients with extrahepatic biliary obstruction was therefore undertaken, in relation to those isoenzymes already described in human bile (Wenham et al., 1978a), with a view to finding an explanation of the elevation in serum γGT activity observed in this group of patients.

Material and methods

Sera were obtained from 10 patients with extrahepatic biliary obstruction, diagnosed at laparotomy or necropsy, and from nine laboratory staff who acted as normal controls.

Agar gel electrophoresis was performed on the Multiphor electrophoresis equipment (LKB Produkter, Bromma, Sweden) by a method already described (Wenham et al., 1978a).

Polyacrylamide gel disc electrophoresis was carried out using the Shandon electrophoresis equipment and the method of Azzopardi and Jayle (1973). Before application of the samples, bromophenol blue was added to the serum so that the mobilities of the bands of enzyme activity could be related to albumin. The mobilities were expressed as a fraction of the mobility of albumin.

The γ-GT isoenzymes fractionated by these two techniques were visualised by means of incubation with γ-L-glutamyl α-naphthylamide, coupling the liberated α-naphthyramine with Fast Blue B, by the optimised method of Wenham et al. (1978b). The isoenzymes were also quantitated after polyacrylamide gel electrophoresis by cutting the gel into 0.5 cm segments and incubating the homogenised gel segments in buffered substrate according to the method of Rosalki et al. (1970).

Gel filtration chromatography using Sephadex G200 (Pharmacia, Uppsala, Sweden) and buoyant density ultracentrifugation were both performed by methods previously described (Wenham et al., 1978a), and enzyme activity in the fractions obtained was determined by the method of Rosalki and Tarlow (1974).
Results

ELECTROPHORETIC STUDIES

Each of the patient's sera showed three zones of enzyme activity after agar gel electrophoresis, in the \(\alpha_1 \), \(\alpha_2 \), and \(\beta \)-globulin fractions. In normal sera, only two bands of activity were obtained, in the \(\alpha_2 \) and \(\alpha \)-globulin fractions.

Polyacrylamide gel disc electrophoresis of normal sera also resulted in two zones of activity with mobilities of 23% and 77% of albumin (Raib values of 23 and 77). Sera from patients with extrahepatic biliary obstruction gave rise to four zones of activity after polyacrylamide gel electrophoresis, with Raib values of 0, 23, 55, and 77. The origin band and the band with an Raib value of 55 appeared to contribute the most towards enzyme activity, and this was confirmed using the quantitative technique (Fig. 1).

GEL FILTRATION STUDIES

Fractionation of serum yielded three main protein peaks, as described by Flodin and Killander (1962). The normal sera each yielded two peaks of \(\gamma \)GT activity, eluting between the 19S and 7S and between the 7S and 4S proteins, respectively (Fig. 2). The mean recovery of enzyme activity was 95%. Three fractions were obtained from each of the sera from patients with extrahepatic biliary obstruction, one eluting with the void volume, one between the 19S and 7S, and the other between the 7S and 4S proteins (Fig. 3). In all samples studied, the first two peaks always possessed much more activity than the third, whose activity did not differ significantly from the level observed in the normal sera (Table 1). The mean recovery of enzyme activity was 98%.

Table 1 \(\gamma \)GT activity in different fractions obtained by gel filtration and ultracentrifugation of sera from patients with extrahepatic biliary obstruction, expressed as a percentage of total activity recovered

<table>
<thead>
<tr>
<th>Sample</th>
<th>Gel filtration</th>
<th>Ultracentrifugation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Void volume</td>
<td>19S-7S</td>
</tr>
<tr>
<td>PM</td>
<td>48</td>
<td>49</td>
</tr>
<tr>
<td>CC</td>
<td>57</td>
<td>41</td>
</tr>
<tr>
<td>NS</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>MW</td>
<td>81</td>
<td>16</td>
</tr>
<tr>
<td>FG</td>
<td>82</td>
<td>15</td>
</tr>
<tr>
<td>MG</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>AM</td>
<td>86</td>
<td>9</td>
</tr>
<tr>
<td>AB</td>
<td>54</td>
<td>43</td>
</tr>
<tr>
<td>Normal sera</td>
<td>0</td>
<td>57-65</td>
</tr>
</tbody>
</table>

ULTRACENTRIFUGATION STUDIES

Buoyant density ultracentrifugation of normal sera showed only one peak of \(\gamma \)GT activity, sedimenting with the 4S proteins (Fig. 4). Enzyme recovery
averaged 95%. All of the patients’ samples studied showed two peaks of γGT activity, one sedimenting with the 4S proteins and the other floating at the top of the gradient (Fig. 5). The mean recovery of enzyme activity was 79%. The relative contributions of the 4S and the low density peaks towards total activity were not always constant (Table 1), but the activity of the 4S peak in the patients’ samples was always higher than the 4S peak observed in the normal sera. They are arbitrarily numbered in Table 2 solely for ease of discussion.

Discussion

Many methods have been used for the fractionation of serum γGT isoenzymes in hepatobiliary diseases, but little comparative work has been undertaken on the techniques employed. Our results using agar gel electrophoresis show that, in hepatobiliary biliary obstruction, zones of enzyme activity are present in the α1-, α2- and β-globulin fractions. These results are in agreement with those of Miyazaki and Okumura (1972) using agar, and also with Hetland et al. (1975) using agarose, another medium that does not exert a molecular sieving effect.

Polyacrylamide gel electrophoresis of patients’ sera produced four zones of enzyme activity, two of which were not present in normal sera (Table 2) and which together constituted almost all of the total activity. A high activity origin band was also demonstrated by Azzopardi and Jayle (1973) using polyacrylamide, and by Orłowski and Szczeklik (1967) and Kokot and Kuska (1968) using starch gel. Sephadex gel filtration of patients’ sera produced

Table 2 Physicochemical characteristics of the γGT isoenzymes in patients’ sera with extrahepatic biliary obstruction

<table>
<thead>
<tr>
<th>Isoenzyme</th>
<th>Elution from G200</th>
<th>Buoyant density ultracentrifugation</th>
<th>Electrophoretic mobility</th>
<th>Relative contribution towards total activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Agar</td>
<td>Polyacrylamide</td>
</tr>
<tr>
<td>S1</td>
<td>Void volume</td>
<td>Floats</td>
<td>β</td>
<td>0</td>
</tr>
<tr>
<td>S11</td>
<td>Void volume</td>
<td>Floats</td>
<td>α1</td>
<td>0</td>
</tr>
<tr>
<td>SiV</td>
<td>19S-7S</td>
<td>4S</td>
<td>α2</td>
<td>55</td>
</tr>
<tr>
<td>SV</td>
<td>19S-7S</td>
<td>4S</td>
<td>α1</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>7S-4S</td>
<td>4S</td>
<td>α2</td>
<td>77</td>
</tr>
</tbody>
</table>

*Present also in normal sera
Serum \(\gamma\)-glutamyltransferase isoenzymes in extrahepatic biliary obstruction

three \(\gamma\)GT fractions, eluting with the void volume, 19S-7S, and 7S-4S protein fractions. The last two fractions were also obtained from normal sera. These results agree with the work of Orlowski et al. (1965), Orlowski and Szczeklik (1967), and Kokot and Kuska (1968), except that these authors claimed to have shown the 19S fraction to be present in normal sera.

After buoyant density ultracentrifugation of normal sera, all of the enzyme activity sedimented with the 4S protein fraction (Fig. 4) in agreement with Szweczuk (1966). Patients' sera, on the other hand, showed the presence of an additional low density fraction (Fig. 5).

From the results of the comparison study it was concluded that five isoenzymes could be identified in the sera of each patient, and that the increase in the total serum \(\gamma\)GT activity observed in these patients was due to the appearance of three isoenzymes, S1, S11, and S111 (Table 2), not normally present. Isoenzymes S11 and S111 appear to contribute equally towards most of the activity but are very different in their chromatographic characteristics. Isoenzyme S11 is a low density molecule of high molecular size, whereas isoenzyme S111 is a smaller, denser molecule. The remaining abnormal isoenzyme, isoenzyme S1, is identical with S11 in every respect except for its electrophoretic mobility on agar gel (Table 2). It may be that these isoenzymes differ only in a component conferring a different electrical charge at pH 8.6.

The high molecular size of isoenzymes S1 and S11 may arise from polymerisation of the normal liver enzyme, although this is unlikely owing to their very low buoyant density. It is much more likely that they are the result of the association of \(\gamma\)GT with a very low density component such as lipid or lipoprotein. Such an association has been demonstrated for alkaline phosphatase (Moss, 1962; Dunne et al., 1967; Jennings et al., 1970; Price and Sammons, 1974). In the case of \(\gamma\)GT, it has been suggested that the bilary enzyme may be associated with lipid (Wenham et al., 1978a); furthermore, Beck (1978) suggested that a serum isoenzyme might be associated with a lipid component.

In a study resembling our own, Huseby (1978) concluded that the heterogeneity of \(\gamma\)GT found after gel filtration and electrophoresis was due to aggregates of an amphiphilic form of \(\gamma\)GT with lipids and other proteins. This author, studying \(\gamma\)GT in liver extract, bile, and a normal serum pool, showed that papain digestion and incubation with detergent each produced a smaller molecule, corresponding to isoenzymes SV and S111, respectively, in this study. The detergent effect upon bilary \(\gamma\)GT confirmed our previous demonstration (Wenham et al., 1978a) that extraction of bilary \(\gamma\)GT with n-butanol resulted in the production of a smaller molecule possessing identical physicochemical characteristics to isoenzyme S111 (Table 2), a process similar to that already proposed for bilary alkaline phosphatase (Price et al., 1972).

We propose that isoenzyme S111 is the main liver isoenzyme, and in response to the obstruction its rate of release into the circulation is increased. It is normally present in the bile but attached to a lipid component, resulting in a larger molecule with slower electrophoretic mobility. Whether this increased rate of release into the circulation is due to an increased rate of production remains to be determined. Such a process has been ruled out in the guinea-pig (Huseby and Vik, 1978). The origin of the isoenzyme SV remains obscure. Huseby (1978) was able to produce it by incubating liver homogenate at pH 7.2 and 37°C as well as by the action of papain digestion. This enzyme therefore may well arise by \textit{in vivo} proteolytic activity on isoenzyme S111.

Isoenzymes S1 and S11 may arise by either:

(i) regurgitation of bilary \(\gamma\)GT back into the circulation due to obstruction of normal bile flow. During regurgitation the bilary enzyme may become associated with a lipoprotein carrier, conferring the low buoyant densities of isoenzymes S1 and S11, similar to that proposed for alkaline phosphatase (Price and Sammons, 1974); or:

(ii) solubilisation of liver membrane-bound enzyme into membranous vesicles by the action of accumulated bile salts. Such a process has been suggested in the case of alkaline phosphatase (De Broe et al., 1975; 1978) and also \(\gamma\)GT during experimental obstruction in the guinea-pig (Huseby and Vik, 1978).

Present evidence cannot prove which, if not both, processes occur. Nevertheless this study has demonstrated that in obstructive liver disease a similar process occurs with respect to bilary \(\gamma\)GT as occurs with bilary alkaline phosphatase, the bilary enzyme appearing in the circulation in modified form. In the case of alkaline phosphatase, fewer isoenzymes have been demonstrated in the sera of patients with obstructive liver disease, and therefore it would be unwise to extend the similarities too far. However, it is well known that changes in serum \(\gamma\)GT and alkaline phosphatase are not necessarily the same in all patients with liver disease, and clearly other factors may contribute to the elevation of serum \(\gamma\)GT activity.

As the factors that affect levels of enzymes in the blood are determined, the importance of the isoenzymes of \(\gamma\)GT in serum will be better understood. Then the measurement of the isoenzymes of \(\gamma\)GT
and alkaline phosphatase may prove to be of value in the differential diagnosis of liver disease.

References

Requests for reprints to: P. R. Wenham, Department of Clinical Chemistry, Western General Hospital, Edinburgh EH4 2XU, UK.