Antimicrobial susceptibilities of Clostridium difficile

R SHUTTLEWORTH, MILDRED TAYLOR, AND DM JONES
From the Public Health Laboratory, Withington Hospital, Manchester M20 8LR, UK

SUMMARY The antimicrobial susceptibilities of 78 strains of Clostridium difficile isolated from patients with and without gastrointestinal symptoms were determined and compared. Strains from patients with symptoms were more likely to show resistance to antibiotics. The antimicrobial susceptibilities of toxigenic and non-toxigenic strains were found to be similar.

In the last two years advances have been made in understanding the aetiology of pseudomembranous colitis (PMC). Larson and Price1 and Rifkin et al.2 demonstrated a toxin in the faeces of patients with PMC that was shown to be neutralised by Clostridium sordellii antitoxin and produced by Clostridium difficile.3 More evidence has accumulated4,5 that suggests that Cl. difficile is associated with antibiotic-associated PMC. This condition has been described in patients who have received treatment with an antibiotic from most of the major groups of antibiotics except vancomycin and metronidazole. The presence of the toxin of Cl. difficile in faeces has also been associated with diarrhoea related to antibiotic therapy, but without the pathological features of PMC. It is thought that the antibiotic therapy produces changes in the faecal flora and allows Cl. difficile to proliferate and produce pathological amounts of toxin. It is therefore of interest to establish the antibiotic sensitivity patterns of Cl. difficile isolated from the faeces of normal individuals.

All strains of Cl. difficile isolated from patients with PMC have been found to be highly sensitive to vancomycin,6,7 and vancomycin has been used with success in the treatment of PMC,8,9 though relapse has been observed after cessation of therapy.10 Published reports6,7 on the antibiotic susceptibility of Cl. difficile have given data on only a few strains, and these have been collected mainly from proven cases of PMC. This report gives data on a total of 78 strains, including those isolated from patients without gastrointestinal symptoms. A comparison has been made of the sensitivity patterns of both toxigenic and non-toxigenic strains, and the susceptibilities of strains isolated from asymptomatic carriers have been compared with those from patients with gastrointestinal symptoms.

Material and methods

SOURCE OF STRAINS Seventy-two strains of Cl. difficile were isolated from the faeces of patients with PMC or antibiotic-associated diarrhoea and from faeces of patients without gastrointestinal symptoms (Table 1). Not all patients with symptoms were subjected to sigmoidoscopy so we have regarded patients with PMC or antibiotic-associated diarrhoea as a single group. In addition, strains 17249, 7988, 32288, 13231, 25917, and 21153 were supplied by Dr DW Burdon, of Birmingham; all six were toxigenic strains isolated from adults with PMC. The organisms were identified on the grounds of colonial and cellular morphology, biochemical reactions, and gas-liquid chromatography.11

Table 1 Source of strains of Cl. difficile

<table>
<thead>
<tr>
<th>Patient category</th>
<th>Toxigenic</th>
<th>Non-toxigenic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symptomless babies 0-2 years</td>
<td>29</td>
<td>31</td>
</tr>
<tr>
<td>Symptomless adults</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Symptomatic adults, Manchester</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Symptomatic adults, Birmingham</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

TOXIGENICITY TESTING Cultures of Cl. difficile were grown in cooked meat medium for two days at 37°C, and culture supernatants were tested for cytopathogenicity to MRC 5 cells and neutralisation by Cl. sordellii antitoxin.1 During the course of toxigenicity testing it was found that some strains failed to show a cytopathic effect. In order to confirm the absence of toxigenicity, one such strain was subjected to further testing. The
organism was grown in a medium containing 2% Proteose Peptone No. 3 (Difco) and 1% glucose, and duplicate cultures were incubated at 37°C and 42°C for three days before being tested for cytotoxicity in tissue culture, as described above, with negative results. The same strain was then cultured for two days in Brain-Heart Infusion broth (Oxoid) at 37°C, and 0.5 ml of the culture supernatant was injected subcutaneously into a guinea-pig, as described by Hall and O'Toole. The guinea-pig failed to show any signs of toxemia. This strain and eight other 'non-toxigenic' strains were grown in 2% Proteose Peptone No. 3 (Difco) containing 0.5% glucose and 1 µg/ml clindamycin for three days and retested for toxin production in tissue culture. The presence of this concentration of clindamycin did not stimulate these strains to produce toxin. Subsequently, strains that failed to show a cytopathic effect were regarded as non-toxigenic.

Determination of Minimum Inhibitory Concentrations (MIC)

All strains were tested against the following antibiotics by the agar dilution method: ampicillin, cefoxitin, cephalaxin, clindamyacin, metronidazole, erythromycin, sulphadiazine, tetracycline, and vancomycin. The antibiotics were incorporated in doubling dilutions in 20 ml DST agar plates containing 10% lyzed horse blood, giving final concentrations ranging from 0-125 to 1024 µg/ml. Suspensions of *Cl. difficile* from overnight cultures on blood agar were made in nutrient broth and applied to the agar surface using a multipoint inoculator. The inoculum was of the order of 10⁴ colony-forming units. All plates were incubated anaerobically for 48 hours at 37°C using the Gas Pak system (Becton Dickinson Ltd).

Disc Sensitivity Tests

Disc sensitivity tests were performed on Oxoid DST agar containing 10% lyzed horse blood incubated at 37°C under anaerobic conditions. Results were recorded after 18-24 hours' incubation. The following antibiotic discs were used: tetracycline (10 µg), erythromycin (5 µg), clindamycin (2 µg), ampicillin (10 µg), cephradine (30 µg), cotrimoxazole (25 µg), chloramphenicol (30 µg), vancomycin (5 µg), metronidazole (5 µg), fucidin (10 µg), colistin (10 µg), gentamicin (10 µg), novobiocin (5 µg), spectinomycin (25 µg), trimethoprim (1 µg), and nalidixic acid (30 µg).

Results

Minimum Inhibitory Concentrations

The results of MIC determinations are given in

Table 2 Minimum inhibitory concentrations for various antibiotics (78 strains)

<table>
<thead>
<tr>
<th>Group</th>
<th>Antibiotic</th>
<th>No. of strains with MIC (µg/ml) of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>≤0-125</td>
</tr>
<tr>
<td>I</td>
<td>Cefoxitin</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Cephalaxin</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Vancomycin</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Erythromycin</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Ampicillin</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>Clindamycin</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>Tetracycline</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>Metronidazole</td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>Sulphadiazine</td>
<td></td>
</tr>
</tbody>
</table>

*Group I 29 toxigenic strains of *Cl. difficile* from babies aged 0-2 years.
II 32 non-toxigenic strains of *Cl. difficile* (31 from babies aged 0-2 years and 1 from a symptomless adult).
III 17 strains of *Cl. difficile* from adults with gastrointestinal symptoms (including 1 non-toxigenic strain).
Table 3 Antibiotic susceptibilities of strains from patients with gastrointestinal symptoms

<table>
<thead>
<tr>
<th>Patient No.</th>
<th>Previous antibiotic treatment</th>
<th>Sensitivity pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1*</td>
<td>None</td>
<td>Resistant to erythromycin, clindamycin†</td>
</tr>
<tr>
<td>M2</td>
<td>Cotrimoxazole</td>
<td>Resistant to tetracycline, cotrimoxazole</td>
</tr>
<tr>
<td>M3</td>
<td>Ampicillin, flucloxacillin</td>
<td>Typical</td>
</tr>
<tr>
<td>M4</td>
<td>Ampicillin</td>
<td>Typical</td>
</tr>
<tr>
<td>M5</td>
<td>Clindamycin</td>
<td>Resistant to tetracycline, erythromycin, clindamycin</td>
</tr>
<tr>
<td>M6</td>
<td>Gentamicin, flucloxacillin</td>
<td>Typical</td>
</tr>
<tr>
<td>M7</td>
<td>Cotrimoxazole, flucloxacillin, gentamicin, carbenicillin</td>
<td>Typical</td>
</tr>
<tr>
<td>M8</td>
<td>Cephalaxin</td>
<td>Typical</td>
</tr>
<tr>
<td>M9</td>
<td>Cephradine, gentamicin, ampicillin</td>
<td>Resistant to tetracycline, erythromycin</td>
</tr>
<tr>
<td>M10</td>
<td>Amoxicillin, metronidazole, cotrimoxazole</td>
<td>Resistant to tetracycline, erythromycin, clindamycin</td>
</tr>
<tr>
<td>B1</td>
<td>Not known</td>
<td>Typical</td>
</tr>
<tr>
<td>B2</td>
<td>Not known</td>
<td>Typical</td>
</tr>
<tr>
<td>B3</td>
<td>Not known</td>
<td>Typical</td>
</tr>
<tr>
<td>B4</td>
<td>Not known</td>
<td>Typical</td>
</tr>
<tr>
<td>B5</td>
<td>Not known</td>
<td>Typical</td>
</tr>
<tr>
<td>B6</td>
<td>Not known</td>
<td>Typical</td>
</tr>
</tbody>
</table>

*M = Manchester; B = Birmingham.
†Typical = resistant to cephalaxin, ceftoxin, gentamicin; moderately resistant to clindamycin; and sensitive to tetracycline, erythromycin, cotrimoxazole.

Table 2. The MIC results were in accord with the disc sensitivity results except for cephalaxin, ceftoxin, and ampicillin. All strains were resistant (MIC 32-256 μg/ml) to both cephalaxin and ceftoxin, and the MIC of ampicillin varied between 1 and 8 μg/ml. All strains were sensitive to metronidazole (MIC 0.125-8 μg/ml) and vancomycin (MIC 1-4 μg/ml). The susceptibilities of the strains isolated from patients with symptoms were compared to previous antibiotic therapy (Table 3).

DISC SENSITIVITY TESTS

Disc sensitivity tests correlated well with the MIC results for the antibiotics given in Table 2. In addition, all strains gave zones greater than 20 mm with fucin, and no zones were developed against colistin, gentamicin, novobiocin, spectinomycin, trimethoprim, or nalidixic acid. Two strains showed smaller than average zones with chloramphenicol; both were from cases of PMC and both were from Birmingham.

Discussion

It is not clear from published work whether the strains associated with gastrointestinal symptoms differ in their antibiotic susceptibilities from those of strains isolated from symptomless excreters. All the strains of *Cl. difficile* that we examined were resistant to cephalaxin and ceftoxin. Resistance to clindamycin, tetracycline, erythromycin, or cotrimoxazole was observed but was restricted to strains isolated from patients with gastrointestinal symptoms. It may be that the use of any of these agents could be associated with the proliferation of *Cl. difficile* in the gut. There were no common combinations of antibiotic resistance among the strains isolated from patients with symptoms although, as shown in Table 3, many were resistant to an antibiotic previously taken by the patient. For the majority of strains, the MIC of clindamycin was 1-8 μg/ml, but those strains that showed no zones on disc testing were much more resistant (MIC > 1024 μg/ml), and all of these came from patients with gastrointestinal symptoms. All the strains of *Cl. difficile* were uniformly sensitive to vancomycin, confirming the conclusions of Burdon et al. that this drug may be expected to produce good results for the treatment of PMC. There was no correlation between the production of toxin and resistance to antibiotics since the patterns for toxigenic and non-toxigenic strains from symptomless excreters were generally similar. Indeed, five asymptomatic patients yielded both toxigenic and non-toxigenic strains, and when the susceptibilities of these pairs of strains were compared there were no significant differences.

This investigation was supported by a grant from the North West Regional Health Authority.

References

Antimicrobial susceptibilities of Clostridium difficile

Requests for reprints to: Dr DM Jones, Public Health Laboratory, Withington Hospital, Manchester M20 8LR, UK.

Reports and Bulletins prepared by the Association of Clinical Biochemists

The following reports and bulletins are published by the Association of Clinical Biochemists. They may be obtained from The Publishing Department, British Medical Journal (ACB Technical Bulletins), BMA House, Tavistock Square, London WC1H 9JR. Overseas readers should remit by British Postal or Money Order.

SCIENTIFIC REVIEWS (price £1.00/$2.00 each)

1. The assessment of thyroid function March 1971
 FV FLYNN and JR HOBBS

2. Renal function tests suitable for clinical practice
 January 1972
 FL MITCHELL, N VEALL, and RWE WATTS

3. Biochemical tests for the assessment of fetoplacental function
 May 1975
 CE WILDE and RE OAKLEY

4. Test of exocrine pancreatic function March 1977
 AH GOWENLOCK

5. Assay of cholinesterase in clinical chemistry
 March 1979
 ELSIE SILK, J KING, and MARY WHITTAKER

TECHNICAL BULLETINS (price £1.00/$2.00 each)

22. Bilirubin standards and the determination of bilirubin by manual and technicon AutoAnalyzer methods
 January 1971
 BARBARA BILLING, RUTH HASLAM, and N WALD

23. Interchangeable cells for spectrophotometers and fluorimeters
 September 1971
 SS BROWN and AH GOWENLOCK

24. Simple tests to detect poisons
 March 1972
 BW MEADE et al.

25. Blood gas analysers
 May 1972
 K DIXON

26. Kits for enzyme activity determination
 September 1972
 SB ROSALKI and D TARLOW

27. Assessment of pumps suitable for incorporation into existing continuous flow analytical systems
 November 1972
 A FLECK et al.

28. Routine clinical measurements of transferrin in human serum
 September 1973
 K DIXON

29. Control materials for clinical biochemistry (5th edition)
 September 1973
 JF STEVENS

30. Notes on the quality of performance of serum cholesterol assays
 September 1973
 SS BROWN

31. Determination of uric acid in blood and in urine
 July 1974
 RWE WATTS

32. A survey of amino acid analysers readily available in the United Kingdom September 1974
 JE CARLYLE and P PURKISS

33. Definitions of some words and terms used in automated analysis
 November 1974
 A FLECK, R ROBINSON, SS BROWN, and JR HOBBS

34. Measurement of albumin in the sera of patients
 January 1975
 LINDA SLATER, PM CARTER, and JR HOBBS

35. Investigation of the validity of temperature correction factors for serum aspartate and alanine transaminases
 March 1975
 SB ROSALKI et al.

36. Factors influencing the assay of creatinine
 November 1975
 JGH COOK

37. A survey of enzyme reaction rate analysers readily available in the United Kingdom
 July 1977
 RA SAUNDERS and RF BURNS

38. Transport of specimens for clinical chemistry analysis
 November 1977
 P WILDING, JF ZILVA, and CE WILDE

39. A scheme for the evaluation of diagnostic kits
 May 1978
 PH LLOYD

40. A practical guide to gamma-counting in radioimmunoassay
 January 1980
 CE WILDE and D OTTEWELL
