Heparin stability: effects of diluent, heparin activity, container, and pH

KENNETH T GOODALL, CHEE-CHOONG CHOOI, AND ALEXANDER S GALLUS

From the Department of Haematology, Flinders Medical Centre, Bedford Park, South Australia 5042, Australia

SUMMARY The effects have been studied of diluent, heparin activity after dilution, container, and pH on the stability of heparin solutions stored under conditions resembling those present during heparin infusion by intravenous drip or syringe pump. Heparin activity was measured by activated partial thromboplastin time and thrombin clotting time (and, in one set of studies, also by factor Xa inhibitor assay and protamine sulphate neutralisation).

Heparin activity was stable for 6 hours regardless of storage conditions. After 24 hours heparin activity was stable when the drug was diluted in 0.9% saline and stored in plastic, but a small loss of activity was observed in several studies after dilution in 5% dextrose or storage in glass. A more extensive comparison confirmed a 3-5% loss in heparin activity over 24 hours after dilution in 5% dextrose. Changing the pH to 3.5 or 10.0 had little effect on storage stability.

We conclude that heparin activity in vitro remains stable during short infusions but recommend dilution in 0.9% saline and a plastic container when a heparin solution is infused over 24 hours.

Heparin is now commonly given by continuous intravenous infusion rather than by intermittent injection. For this mode of administration heparin is diluted in one of several intravenous infusion fluids and may then remain at room temperature in the infusion bag, bottle, or syringe for 8-24 hours. It is, therefore, important to know if its anticoagulant activity remains stable in vitro for this time.

This question has been repeatedly investigated with varying results (Table). Thus, it has been reported that heparin activity is constant for 24 hours regardless of the diluting fluid or its pH over a wide range, or that heparin activity is reduced by 40-50% within 1 hour of dilution except in 0.9% sodium chloride, or that heparin activity is reduced by 50-60% after 4-6 hours in all diluents but then increases again with further storage.

Because of these contradictory and sometimes confusing reports about heparin stability in vitro we decided to re-investigate the question.

Further, because there is disagreement about the most appropriate test of heparin effect, we decided to measure heparin stability in vitro using four tests: the activated partial thromboplastin time (APTT), the thrombin clotting time (TCT), factor Xa inhibitory activity (Xa time), and protamine sulphate neutralisation.

Methods

STUDY DESIGN Sodium heparin was added to 500 ml 0.9% saline or 5% dextrose, supplied commercially for intravenous use in plastic bags or glass bottles, to give a heparin activity of 10, 20, or 40 IU/ml, and to 50 ml 0.9% saline or 5% dextrose drawn into a plastic syringe to give a heparin activity of 400 or 1000 IU/ml. These conditions were chosen to mimic those obtaining during heparin infusion by intravenous drip or syringe pump. Heparin activity was assayed immediately and after 3, 6, and 24 hours of room temperature storage. In addition, heparin stability was measured during storage at varying pH.

HEPARIN AND INTRAVENOUS FLUIDS Mucous heparin BP (1000 or 5000 IU/ml) was obtained from Allen and Hanbury's Division of Glaxo Australia Pty Ltd (Boronia, Victoria). Intravenously...
Heparin stability: effects of diluent, heparin activity, container, and pH

Previously reported changes in heparin activity after dilution and storage

<table>
<thead>
<tr>
<th>Authors</th>
<th>Heparin activity (U/ml)</th>
<th>Storage (hours)</th>
<th>Diluting fluid</th>
<th>pH</th>
<th>Assay</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock and Warner</td>
<td>964</td>
<td>24</td>
<td>5% Dextrose</td>
<td>7.0</td>
<td>Not described</td>
<td>No loss of activity</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td>6.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hobdy et al. (1972)</td>
<td>32</td>
<td>24</td>
<td>0.9% Sodium chloride</td>
<td>6.9</td>
<td>APTT</td>
<td>No loss of activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5% Dextrose</td>
<td>7.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dextrose saline</td>
<td>6.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.9% Sodium chloride</td>
<td>3.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Normal saline</td>
<td>5.2</td>
<td>TCT</td>
<td>No loss of activity</td>
</tr>
<tr>
<td>Mitchell et al. 1976</td>
<td>20, 40</td>
<td>48</td>
<td>Normal saline</td>
<td>5.5</td>
<td>TCT</td>
<td>No loss of activity</td>
</tr>
<tr>
<td>Joy et al. (1979)</td>
<td>20</td>
<td>24</td>
<td>0.45% Saline</td>
<td>5.0</td>
<td>TCT</td>
<td>No loss of activity</td>
</tr>
</tbody>
</table>
| Jacobs et al. (1973) | 20 | 24 | Normal saline | 6.8| Modified TCT| No loss of activity
| | | | 5% Dextrose | 3.9| | |
| | | | Saline/Dextrose | 3.9| | |
| | | | Ringer lactate | 6.3| | |
| | | | Saline lactate | 6.3| | |
| | | | Normal saline | 5.5| TCT | Marked loss of activity within 4 hours, then complete recovery by Xa inhibitor assay but not by TCT |
| Okuno and Nelson | 10 | 24 | Normal saline | 5.5| TCT | |
| (1975) | | | 5% Dextrose | 5.6| | |
| | | | 10% Dextrose | 5.7| | |
| | | | 24% Dextrose | 5.8| | |
| | | | Hartmann's solution | 5.9| | |

venous fluids were obtained in plastic bags from Travenol Laboratories Pty Ltd (Sydney) and in glass bottles from Abbott Laboratories Pty Ltd (Sydney). Plastic syringes were supplied by Terumo Australia Pty Ltd (Melbourne).

In some experiments the pH of 0.9% saline and 5% dextrose was adjusted to 3.5 or 10.0 with 0.1 N HCl or 0.1 N NaOH before the addition of heparin.

HEPARIN ACTIVITY MEASUREMENTS
Heparin solutions were subsampled into pooled normal platelet poor plasma for the measurement of heparin activity after each storage interval. After a preliminary dilution, 10 or 20 μl of heparin solution were added to 1.0 ml plasma to yield a calculated final plasma activity of 0.2 IU/ml (assuming no change in activity with storage). All tests were done in duplicate at least five times by two workers using coded samples. Samples were stored on melting ice until tests had been done.

To prepare the normal plasma, blood was collected from volunteer blood donors into 3.8% tri-sodium citrate (9 parts blood:1 volume citrate) and centrifuged at 2000 g for 30 minutes at 4°C. Pooled normal plasma from 20 donors was then stored in small aliquots at −70°C. The same batch of pooled normal plasma was used for each set of studies.

Heparin activity was measured with the APTT and the TCT in all studies, and, in one series of experiments, heparin activity was also measured by a factor Xa inhibitor method (Xa time)7 and by protamine sulphate neutralisation.8 All tests were done using a clot-detecting device (Clotek, Hyland), except for the Xa time, which was measured using a manual (hook) technique.

The observed clotting times for each test were converted to heparin activity (IU/ml) by the use of standard heparin sensitivity curves for each test (see below, and Figs 1-3).

Automated APTT reagent was obtained from General Diagnostics (Morris Plains, New Jersey) and used according to the manufacturer's instructions. The TCT was measured after diluting Topical

![Graph](http://jcp.bmj.com/)

Fig. 1 Heparin sensitivity of APTT. The mean APTT ± SEM is plotted for each heparin activity tested. The line of best fit was derived by least squares analysis.
Thrombin (Parke Davis, Detroit, Michigan) to an activity of 5 units/ml in 0.1 M calcium chloride and adding 0.1 ml of this reagent to 0.2 ml platelet poor plasma.

The Xa time was measured using the Deci Unit range of method A of Yin et al. Reagents for this test were obtained from Sigma Chemicals Co (St Louis, Mo).

Protamine sulphate neutralisation was done as described by Refn and Vestergaard using dilutions of protamine sulphate (10 mg/ml) supplied by Boots Co Ltd (Nottingham, England).

HEPARIN SENSITIVITY CURVES AND HEPARIN RECOVERY FROM PLASMA

The sensitivities of the APTT, TCT, and Xa CT to heparin are shown in Figures 1-3. These curves were derived by adding appropriate dilutions of the heparin batch used in the stability studies to pooled normal platelet poor plasma and measuring clotting times in duplicate on five separate occasions.

To check heparin recovery from the pooled normal plasma used in these studies, protamine sulphate was used to neutralise a crystalline porcine sodium mucous heparin (169 IU/mg) obtained by courtesy of Dr Peter Forsell, Allen and Hanbury's, Boronia, Victoria. 100 IU of this heparin was neutralised by 1.045 mg of protamine sulphate. When 0.2 IU/ml of this standard heparin was added to pooled normal plasma, 0.19 IU/ml could be measured by protamine sulphate neutralisation, indicating substantially complete recovery.

STATISTICAL METHODS

Lines of best fit for heparin activity-test response curves were derived by the method of least squares. Change of heparin activity with time was tested by paired t test and analysis of variance. All results in text and figures are expressed as mean ± standard error of mean (SEM).

Results

HEPARIN RECOVERY

At zero time, all heparin solutions showed the predicted heparin activity with all test systems used, so that subsequent results were expressed as a percent of the initial measured activity.

PLASTIC CONTAINERS

There was no significant loss of activity when heparin was diluted in 0.9% saline and stored for 24 hours in plastic containers (bag or syringe) (Figs 4, 5, 7). This occurred regardless of the heparin dilution, the storage pH, and whether heparin activity was measured by APTT, TCT, or (with the 10 IU/ml

Fig. 2 *Heparin sensitivity of TCT. The mean TCT ± SEM is plotted for each activity tested.*

Fig. 3 *Heparin sensitivity of factor Xa inhibitor assay (XaCT). The mean XaCT ± SEM is plotted for each activity tested.*
Heparin stability: effects of diluent, heparin activity, container, and pH

Heparin stability tested by APTT, TCT, Xa time (Xa), and protamine sulphate neutralisation after heparin was diluted to 10 IU/ml and stored in commercial solutions of 0.9% saline (above) or 5% dextrose (below) sold for intravenous use in plastic bags. Bars represent percent of initial activity ± SEM after 3, 6, and 24 hours' storage. **P < 0.01 when activity after storage was compared with initial activity.

Glass Bottles

In several experiments a statistically significant 10-14% loss of activity was recorded after 24 hours' storage in glass bottles. This was seen when activity was measured by APTT (10 IU/ml, 0.9% saline) or TCT (40 IU/ml, 0.9% saline; 20 IU/ml, 40 IU/ml, 5% dextrose) (Fig. 6).

Confirmatory Studies

In a second series of studies, 10 IU/ml heparin was stored for 24 hours in 20 500-ml plastic bags of 0.9% saline and 20 500-ml bags of 5% dextrose, and
heparin activity was measured by APTT and TCT at zero time and after 24 hours.

There was no change of heparin activity in 0.9% saline (24-hour APTT = 99.9 ± 0.6%; 24-hour TCT = 100.3 ± 0.6% of initial activity), but a very small though statistically significant decrease of heparin activity in 5% dextrose (24-hour APTT = 97.3 ± 0.9%, 24-hour TCT = 95.1 ± 1.3% of initial activity; P < 0.01 for both observations).

Discussion

Our results suggest that there is no loss of heparin activity when heparin is diluted in 0.9% saline and stored in plastic for 24 hours at room temperature. Heparin also appears to be stable for 6 hours under other storage conditions, but a small loss was observed in some studies after 24 hours when the drug was diluted in 5% dextrose or stored in glass; this loss was no greater than 10-15% of initial activity. Further studies comparing heparin stability in 0.9% saline and 5% dextrose in plastic bags, using a larger sample of 20, confirmed that heparin is stable for 24 hours in 0.9% saline, but showed a 3-5% loss of activity in 5% dextrose. Any loss of activity associated with storage at the pH extremes of 3.5 and 10.0 was also small.

These conclusions are similar to those of most previous reports and are consistent with the stable anticoagulant response to a 12-hour infusion of heparin diluted in 5% dextrose observed by Chessels et al.9

Our results do not confirm the marked loss of heparin activity reported after dilution in 5% dextrose by Jacobs et al,5 and after dilution in 5% dextrose or 0.9% saline by Okuno and Nelson6 (Table), and we are unable to explain these discrepancies. Our methods of measuring heparin activity differ from those used by Jacobs et al,5 but are similar to those of Okuno and Nelson.6

We conclude that heparin activity in vitro remains stable during a short infusion, but, because of the small loss in activity after 24 hours when heparin is diluted in 5% dextrose or stored in glass, we recommend dilution in 0.9% saline and storage in plastic containers when a heparin solution is to be infused over 24 hours.

We thank Miss J Tillett for able technical help, Dr Peter Forsell, of Allen and Hanbury's, for supplying crystalline heparin, and Mrs Jenny Riddle and Mrs Sheila Phillips for typing the manuscript.

Fig. 6 Heparin stability tested by APTT (clear bars) and TCT (shaded bars) after dilution to 10 IU/ml, 20 IU/ml, and 40 IU/ml in commercial solutions of 0.9% saline (above) or 5% dextrose (below) sold for intravenous use in glass bottles. Bars represent percent of initial activity ± SEM after 3, 6, and 24 hours' storage. *P < 0.05 **P < 0.01 ***P < 0.001 (compared with initial activity).

Fig. 7 Effect of pH 3.5 and pH 10 on heparin stability tested by APTT (clear bars) and TCT (shaded bars) 6 and 24 hours after dilution of heparin to 10 IU/ml in 0.9% saline (above) or 5% dextrose (below) sold for intravenous use in plastic bags. Bars represent percent of initial activity ± SEM *P < 0.05.
Heparin stability: effects of diluent, heparin activity, container, and pH

References

Requests for reprints to: Dr AS Gallus, Department of Haematology, Flinders Medical Centre, Bedford Park, South Australia 5042.

Reports and Bulletins prepared by the Association of Clinical Biochemists

The following reports and bulletins are published by the Association of Clinical Biochemists. They may be obtained from The Publishing Department, British Medical Journal (ACB Technical Bulletins), BMA House, Tavistock Square, London WC1H 9JR. Overseas readers should remit by British Postal or Money Order.

SCIENTIFIC REVIEWS (price £1.00/$2.00 each)

1 The assessment of thyroid function March 1971 FV FLYNN and JR HOBBS
2 Renal function tests suitable for clinical practice January 1972 FL MITCHELL, N VEALL, and RWE WATTS
3 Biochemical tests for the assessment of fetoplacental function May 1975 CE WILDE and RE OAKES
4 Test of exocrine pancreatic function March 1977 AH GOWENLOCK
5 Assay of cholinesterase in clinical chemistry March 1979 ELSIE SILK, J KING, and MARY WHITTAKER

TECHNICAL BULLETINS (price £1.00/$2.00 each)

22 Bilirubin standards and the determination of bilirubin by manual and technicon AutoAnalyzer methods January 1971 BARBARA BILLING, RUTH HASLAM, and N WALT
23 Interchangeable cells for spectrophotometers and fluorimeters September 1971 SS BROWN and AH GOWENLOCK
24 Simple tests to detect poisons March 1972 BW MEADE et al.
25 Blood gas analysers May 1972 K DIXON
26 Kits for enzyme activity determination September 1972 SB ROSALKI and D TARLOW
27 Assessment of pumps suitable for incorporation into existing continuous flow analytical systems November 1972 A FLECK et al.
28 Routine clinical measurements of transferrin in human serum September 1973 K DIXON
29 Control materials for clinical biochemistry (5th edition) September 1973 JF STEVENS
30 Notes on the quality of performance of serum cholesterol assays September 1973 SS BROWN
31 Determination of uric acid in blood and in urine July 1974 RWE WATTS
32 A survey of amino acid analysers readily available in the United Kingdom September 1974 JE CARLYLE and P PURKISS
33 Definitions of some words and terms used in automated analysis November 1974 A FLECK, R ROBINSON, SS BROWN, and JR HOBBS
34 Measurement of albumin in the sera of patients January 1975 LINDA SLATER, PM CARTER, and JR HOBBS
35 Investigation of the validity of temperature correction factors for serum aspartate and alanine transaminases March 1975 SB ROSALKI et al.
36 Factors influencing the assay of creatinine November 1975 JOH COOK
37 A survey of enzyme reaction rate analysers readily available in the United Kingdom July 1977 RA SAUNDERS and RF BURNS
38 Transport of specimens for clinical chemistry analysis November 1977 P WILDING, JF ZILVA, and CE WILDE
39 A scheme for the evaluation of diagnostic kits May 1978 PH LLOYD
40 A practical guide to gamma-counting in radioimmunnoassay January 1980 CE WILDE and D OTTENWELL
41 The use of biochemical tests in the diagnosis of disorders of calcium metabolism July 1980 ANGELA FAIRNEY