Histochemical diagnosis of Hirschsprung's disease and a comparison of the histochemical and biochemical activity of acetylcholinesterase in rectal mucosal biopsies

WJA PATRICK, GTN BESLEY, AND II SMITH

From the Department of Paediatric Pathology, Royal Hospital for Sick Children, Edinburgh, UK

SUMMARY Three hundred and seventy-two rectal mucosal biopsies, taken from 150 children and young adults with chronic constipation, were subjected to histochemical and biochemical analysis of acetylcholinesterase to exclude Hirschsprung's disease. The relative merits of the procedures were compared. The histochemical method was considered to be the most practical for laboratories handling small numbers of biopsies but the biochemical estimation of acetylcholinesterase activity was found to be a useful complementary procedure and an accurate quantitative assessment of enzyme activity.

The introduction of acetylcholinesterase histochemistry has resulted in a reliable means of excluding Hirschsprung's disease in rectal mucosal biopsies.

Previously, the diagnosis of Hirschsprung's disease depended on standard histological techniques, although some workers have used histochemical methods to confirm the diagnosis on resected specimens.

Acetylcholinesterase histochemistry is now used in preference to routine histological methods in many centres. Its diagnostic reliability in rectal mucosal biopsies has been emphasised by Meier-Ruge and his colleagues and confirmed by other workers and ourselves.

The present paper is an account of our experience over a two-year period of the use of acetylcholinesterase histochemistry as a screening procedure to exclude Hirschsprung's disease in rectal mucosal biopsies and compares the histochemical findings with the biochemical activity of the enzyme.

Material and methods

Over a two-year period, which ended in January 1979, 372 rectal mucosal biopsies were performed on 150 children and young adults aged between 6 days and 28 years (Table 1) and the specimens were processed for acetylcholinesterase histochemistry.

Received for publication 8 October 1979

Table 1 Age and sex incidence of patients biopsied: numbers of cases of Hirschsprung's disease in parentheses

<table>
<thead>
<tr>
<th>Age group</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4 weeks</td>
<td>7 (4)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>1-12 months</td>
<td>11 (0)</td>
<td>7 (1)</td>
</tr>
<tr>
<td>1-4 years</td>
<td>30 (4)</td>
<td>18 (1)</td>
</tr>
<tr>
<td>5-12 years</td>
<td>52 (6)</td>
<td>18 (0)</td>
</tr>
<tr>
<td>13-20 years</td>
<td>3 (1)</td>
<td>1 (0)</td>
</tr>
<tr>
<td>> 21 years</td>
<td>1 (0)</td>
<td>2 (0)</td>
</tr>
<tr>
<td>Totals</td>
<td>104 (15)</td>
<td>46 (2)</td>
</tr>
</tbody>
</table>

The biopsies were taken by means of laryngeal punch biopsy forceps at several levels from the anal margin (Table 2). The patients attended hospital as day cases on prearranged days of the week, and the procedure was carried out with sedation or under mild general anaesthesia. The biopsy specimens were transported to the laboratory on ice and orientated under a dissecting microscope; frozen sections were taken for histochemistry within an hour of removal.

Table 2 Levels of individual biopsies: number of biopsies from cases of Hirschsprung's disease in parentheses.

<table>
<thead>
<tr>
<th>Level (cm)</th>
<th>Number</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-5</td>
<td>180 (23)</td>
<td>50</td>
</tr>
<tr>
<td>6-10</td>
<td>35 (18)</td>
<td>10</td>
</tr>
<tr>
<td>11-15</td>
<td>9 (4)</td>
<td>3</td>
</tr>
<tr>
<td>> 15</td>
<td>3 (3)</td>
<td>1</td>
</tr>
<tr>
<td>Not stated</td>
<td>130 (27)</td>
<td>36</td>
</tr>
<tr>
<td>Totals</td>
<td>357 (75)</td>
<td>100</td>
</tr>
</tbody>
</table>

J Clin Pathol 1980; 33: 336-343
Fifteen specimens were subsequently excluded because they were either too badly traumatised or because they were of anal as opposed to rectal mucosa.

One hundred and sixteen of the original 372 biopsy specimens were divided longitudinally so that half of the specimen went for histochemical and the other half for biochemical analysis of acetylcholinesterase. The piece of tissue for biochemistry was wrapped in aluminium foil, snap frozen, and stored for up to one year in the vapour phase of liquid nitrogen before biochemical analysis.

HISTOCHEMICAL METHOD

Reagents

(1) Substrate: Acetylthiocholine iodide (A ThCh) 5 mg, dissolved in 0.1 M-acetate buffer at pH 5.5, with the addition of 0.5 ml 0.1 M-sodium citrate, 1.0 ml 30 mm-cupric sulphate, 1.0 ml distilled water, 1.0 ml 5 mm-potassium ferricyanide, and 0.2 ml 0.01 % (w/v) tetraminoisopropylpyrophosphoramid (iso-OMPA).

(2) DAB/Hanker-Yates solution: 3.3-diaminobenzidine tetrahydrochloride (DAB) 5 mg, dissolved in 10 ml 0.1 M-sodium phosphate buffer at pH 6.8; subsequently Hanker-Yates reagent, 5 mg, dissolved in 10 ml 0.1 M-sodium phosphate buffer at pH 6.8.22

Procedure

The histochemical method used was based on the modification by Karnovsky and Roots23 of that originally described by Koelle and Friedenwald1 using acetylthiocholine iodide as substrate. Cryostat sections, cut at 10 μm, were fixed in standard formol calcium for 1 minute,24 washed in distilled water, and incubated with the substrate for 1 hour at 37°C in the presence of iso-OMPA as a selective irreversible inhibitor of non-specific cholinesterase activity.10 After incubation the sections were washed in distilled water, and the reaction was enhanced by treatment with DAB for 45 minutes and osmium tetroxide for 1 minute.25 The sections were counterstained with haematoxylin and mounted.

The histochemical procedure was carried out routinely on three sections; a fourth control section was incubated in the absence of substrate, and a fifth was stained with haematoxylin and eosin.

BIOCHEMICAL METHOD

Reagents

(1) Substrate (0.015 M A ThCh): Acetylthiocholine iodide (A ThCh), 21.67 mg, added to 4.95 ml distilled water followed by 0.05 ml 1 M-hydrochloric acid.

(2) Colour reagent (0.01 M DTNB): 5.5.dithio-bis-2-nitrobenzoic acid (DTNB), 39.5 mg, and sodium bicarbonate 15 mg, dissolved in 10 ml 0.1 M-phosphate buffer pH 7.0.

(3) Inhibitor (8.52 x 10^-4 M Lysivane): 10-(2-diethylaminopropyl)phenothenozaine hydrochloride (ethopropazine HCl, Lysivane), 27.1 mg, dissolved in 30 ml 2 M-hydrochloric acid and made up to 100 ml with 0.1 M-phosphate buffer pH 7.0.

Procedure

The biochemical method used was a modification by Dale and his colleagues26 of a photometric method originally described by Ellman et al.27 The assays were carried out without prior knowledge of the histochemical findings as single determinations as there was usually insufficient material to do otherwise. The biopsies were trimmed to give a final specimen weighing less than 10 mg. The tissue was hand-homogenised in 0.1 M-phosphate buffer at pH 8.0 in a glass Potter-Elvehjem type homogeniser using 15 strokes. The volume of buffer was sufficient to give a final concentration of 10 mg tissue per ml. The homogenate was centrifuged at 12 000 g for 4 minutes to remove cellular debris. Each stage of the procedure was carried out at approximately 5°C.

Two enzyme determinations were made on each sample, corresponding to (1) total acetylcholinesterase activity and (2) true acetylcholinesterase activity. The total (AChE + ChE) activity was determined at 25°C in microcuvettes by adding 80 μl of tissue extract to 480 μl 0.1 M-phosphate buffer at pH 8.0 and 20 μl colour reagent (DTNB). After allowing the solutions to stabilise for 5 minutes, 20 μl of substrate (A ThCh) was added. The rate of change of absorbance per minute was measured at 412 nm with a recording spectrophotometer. Following determinations of total activity, specific acetylcholinesterase (AChE) activity was measured by the addition of 10 μl of the non-specific cholinesterase (ChE) inhibitor, Lysivane.

Results

The product of the histochemical reaction appears as a dark brown precipitate at the site of nerve fibres and ganglia. In normal mucosal biopsies, a few clearly defined slender nerve fibres are present in the connective tissue of the lamina propria and between muscle bundles in the muscularis mucosae (Fig. 1). The nerve fibres in the submucosa occur in bundles, and ganglion cells are usually prominent, the reaction appearing as fine particulate deposit in the cytoplasm. The supportive Schwann cells are also con-
The range of AChE and ChE activity in nine biopsies showing the histochemical features of Hirschsprung’s disease was 5-3-30-2 units (mean 15-2, SD 9-0) and 2-1-7-9 units (mean 3-8, SD 2-0) respectively (Figs 4 and 5). In six biopsies which were histochemically equivocal, that is to say, biopsies showing some increase in the number of nerve fibres in the muscularis mucosae and, to a lesser extent, the lamina propria, AChE activity (Fig. 4) was within the normal range 1-7-5-7 units (mean 3-7, SD 1-7).

AChE activity expressed as a percentage of total activity in the 101 normal biopsies (Fig. 6) was in the range 27-79% (mean 54-6, SD 10-5), and, for the nine biopsies showing the histochemical features of Hirschsprung’s disease, in the range 70-84% (mean 78-9, SD 6-8).

Discussion

Over 75% of the patients investigated in our series were aged between 1 and 12 years (Table 1). A higher proportion of the cases presenting in infancy were found to have Hirschsprung’s disease. Males outnumbered females both in the number of cases presenting with a history of chronic constipation and in the number who subsequently were shown to have Hirschsprung’s disease. This remarkable preponderance of males with Hirschsprung’s disease has been noted by others,28-30 and our male to female ratio is close to the 8:1 ratio reported in negro infants by Leenders and his colleagues.29

The histochemical criteria for the diagnosis of Hirschsprung’s disease as stated above are those generally accepted by other workers,13-17 19 The increase in the number and size of nerve fibres in the muscularis mucosae and lamina propria is a particularly striking feature, and a diagnosis can be made confidently without reference to the ganglia in the submucosa.13 19 A view that conflicts with that of at least two other groups who consider that the presence of submucosa is essential to accurate diagnosis.16 18 The absence of abnormal nerve fibres in the normal hypoganglionic zone immediately above the pectinate line described by Aldridge and Campbell31 would exclude the disease.

In the histochemical assessment of the sections, care must be taken to be certain that structures resembling ganglia in the submucosa do actually contain ganglion cells and are not just a cluster of supportive cells. As Naik and Cauna32 pointed out, both types of cell show moderate AChE activity. Difficulty may also be encountered if cellular detail in the lamina propria is obscured by haemorrhage.17 19

Accurate definition of the aganglionic segment in Hirschsprung’s disease would require biopsies to be

Fig. 1 Normal rectal mucosa with slender AChE positive nerve fibres (single arrows) in the connective tissue of the lamina propria (lp) and muscularis mucosae (mm), and prominent ganglia (double arrow) in the submucosa (sm). × 25.
Histochemical diagnosis of Hirschsprung's disease

Fig. 2 Rectal mucosa in Hirschsprung's disease with an increase in the number and size of AChE positive nerve fibres (single arrows) in the connective tissue of the lamina propria (lp) and muscularis mucosae (mm), and aggregates of Schwann cells in the submucosa (sm) that could be mistaken for ganglia (short arrow). × 38.

Fig. 3 Superficial rectal mucosa in Hirschsprung's disease with a marked increase in the number and size of AChE positive nerve fibres (single arrow) in the lamina propria: L = lumen. × 47.
Fig. 4 AChe activity in biopsy specimens showing a normal histochemical reaction (A), and in those with the histochemical features of Hirschsprung's disease (B). The specimens that were histochemically equivocal are represented by interrupted lines.

Fig. 5 ChE activity in biopsy specimens showing a normal histochemical reaction (A), and in those with the histochemical features of Hirschsprung's disease (B). The specimens that were histochemically equivocal are represented by interrupted lines.
Histochemical diagnosis of Hirschsprung's disease

Fig. 6 AChE activity expressed as a percentage of total activity in biopsy specimens showing a normal histochemical reaction (top) and in those with the histochemical features of Hirschsprung's disease (bottom). The specimens that were histochemically equivocal are represented by interrupted lines.

AChE activity

% AChE activity

0 10 20 30 40 50 60 70 80 90 100

0 2 4 6 8

Younger children and 5, 6, and 7 cm from the anal verge in older children; Martinez-Almoyna and his colleagues18 had biopsies taken at 3, 5, and 10 cm from the pectinate line; and in the series of Lake and his colleagues19 the biopsy specimens were taken at 2, 4, and 5 cm from the mucocutaneous junction in most cases. The levels chosen by Chow and his colleagues18 in younger children and by Martinez-Almoyna and his colleagues18 in older children are in line with our recommendations and diagnostic approach to children with chronic constipation20 and would be more likely to define accurately the length of any aganglionic segment. In our opinion, this would directly influence the surgical management and obviate the need for costly radiographic and monometric investigations.34

Up to 150 sections may have to be examined to exclude Hirschsprung's disease using standard histological techniques,4–7 whereas with the histochemical method a maximum of five sections is all that is required for accurate diagnosis. In 96% of our cases the diagnosis was unequivocal, and in no instance did we have a false-positive result. This compares favourably with histochemical results reported by other authors and is as good as the results obtained using routine histological methods.3–6, 30, 31

Established techniques were used in this study for both the histochemical and biochemical methods. The essential difference between the two methods was in the inhibitors of non-specific cholinesterase (ChE) activity. The inhibitors used (iso-OMPA and Lysivane, respectively) were not the same for each method, but both have been shown to be selective inhibitors of ChE activity10, 35 and therefore would not be expected in any way to complicate the results.

The results obtained biochemically are in almost all instances directly comparable with the histochemical findings, and we agree with Dale and his colleagues21 that the biochemical estimation of AChE activity is a useful complementary procedure, particularly if the histochemical diagnosis is equivocal. Overall the levels of activity are lower in our series than in Dale's—something that may have been due to the fact that the tissue was stored before the analyses were carried out. The figures for AChE activity expressed as a percentage of total activity suggest that the increased activity in Hirschsprung's disease is a true increase in specific (AChE) activity.

Hirschsprung's disease was confirmed in 16 of our 17 cases (Table 1) by histological and histochemical examination of specimens obtained at myectomy or after resection. The remaining case was a microcephalic infant who died before definitive treatment could be undertaken. Of the 16 confirmed cases, six had long segment disease, eight had short segment
disease, and two had ultrashort segment disease by our definition. Four of the six histochemically
equivocal biopsies with biochemical AChE activity
within the normal range were from this single
unconfirmed case of Hirschsprung’s disease in the
series.

For most laboratories handling small numbers of
biopsies the histochemical method is probably the
more practical. Both methods are straightforward
and inexpensive, but the biochemical assay has the
additional advantage of offering an accurate
quantitative assessment of enzyme activity.

We thank Mr A R Cobb and Mr T McLaren for
technical assistance; Mr F Coleman for help with the
preparation of the illustrations; and Mrs Rhona
Anderson for typing the manuscript. We are also
grateful to Dr G Dale for supplying us with a sample
of Lysivane.

References
1 Koelle GB, Friedenwald JS. A histochemical
method for localising cholinesterase activity. Proc Soc Exp
2 Meier-Ruge W. Das Megacolon—Seine Diagnose und
Pathophysiologie. Virchows Arch (Pathol Anat)
3 Swenson O, Fisher JH, MacMahon HE. Rectal biopsy
as an aid in the diagnosis of Hirschsprung’s disease.
4 Dobbins WO, Bill AH Jr. Diagnosis of Hirschsprung’s
disease excluded by rectal suction biopsy. New Engl J
5 Campbell PE, Noblett Helen R. Experience with
rectal suction biopsy in the diagnosis of Hirsch-
6 Shandling B, Auldist AW. Punch biopsy of the rectum
for the diagnosis of Hirschsprung’s disease. J
7 Pease PW, Corkery JJ, Cameron AH. Diagnosis of
Hirschsprung’s disease by punch biopsy of rectum.
Arch Dis Child 1976;51:541-3.
8 Kamijo K, Hiatt RB, Koelle GB. Congenital mega-
colon. A comparison of the spastic and hyper-
trophied segments with respect to cholinesterase
activities and sensitivities to acetylcholine, DFP, and
the barium ion. Gastroenterology 1953;24:173-85.
9 Adams CWM, Marples EA, Trounce JR. Achalasia of
the cardia and Hirschsprung’s disease. The amount
19:473-81.
10 Niemi M, Kouvvalainen K, Hjelt L. Cholinesterases
and monoamine oxidase in congenital megacolon.
11 Garrett JR, Howard ER, Nixon HH. Autonomic
nerves in rectum and colon in Hirschsprung’s disease.
A cholinesterase and catecholamine histochemical
12 Ludvikovský J, Lukáš Z. Biotische Diagnostik des
Morus Hirschsprung unter Verwendung der
Membranotechnik zur histochemischen Sichtbar-
machung der Cholinesterasen. Zentralbl Chir
13 Meier-Ruge W, Lutterbeck PM, Herzog B, Morger R,
Moser R, Schärl I. A. Acetylcholinesterase activity in
suction biopsies of the rectum in the diagnosis of
14 Elema JD, De Vries JA, Vos LJ M. Intensity and prox-
imal extension of acetylcholinesterase activity in the
mucosa of the rectosigmoid in Hirschsprung’s
15 Trigg, PH, Belin R, Haberkorn S et al. Experience with
a cholinesterase histochemical technique for rectal
biopsies in the diagnosis of Hirschsprung’s
16 Chow CW, Chan WC, Yue PCK. Histochemical
criteria for the diagnosis of Hirschsprung’s disease in
rectal suction biopsies by acetylcholinesterase activity.
17 Toorman J, Bots GTAM, Vio PMA. Acetylcholin-
esterase-activity in rectal mucosa of children with
obstruction. Virchows Arch (Pathol Anat) 1977;
376:159-64.
18 Martinez-Almoyna C, Claver Criado MC, Monereo
González JM, Contreras F. Diagnóstico histo-
químico en biopsias rectales por sucesión pediátricas.
19 Lake BD, Puri P, Nixon HH, Claireaux AE. Hirsch-
 sprung’s disease. An appraisal of histochemically
demonstrated acetylcholinesterase activity in suction
rectal biopsy specimens as an aid to diagnosis.
Arch Path Lab Med 1978;102:244-7.
20 Hamdy MH, Scobie WG, Smith II, Patrick WJA. The
changing position of punch biopsy of the rectum
combined with acetylcholinesterase study in the
management of chronic constipation in childhood.
L, Scott DJ. Diagnostic value of rectal mucosal
acetylcholinesterase levels in Hirschsprung’s disease.
22 Harker JS, Yates PE, Metz CB, Rustioni A. A new
specific, sensitive and non-carcinogenic reagent for
the demonstration of horseradish peroxidase. Histo-
23 Karnovsky MJ, Roots L. A ‘direct coloring’ thio-
cholesterol method for cholinesterases. J Histochem
24 El-Badawi A, Schenk EA. Histochemical methods for
separate, consecutive and simultaneous
presentation of acetylcholinesterase and norepinephrine
in cryostat sections. J Histochem Cytochem 1967;
25 Harker JS, Thornburg LP, Yates PE, Moore HG. The
demonstration of cholinesterases by the formation of
osmium blacks at the sites of Hatchett’s brown.
26 Dale G, Bonham JR, Riley Katherine WA, Wagget J.
An improved method for the determination of
acetylcholinesterase activity in rectal biopsy tissue.
Histochemical diagnosis of Hirschsprung's disease

33 Scobie WG. Personal communication, 1979.

Requests for reprints to: Dr WJA Patrick Department of Paediatric Pathology, Royal Hospital for Sick Children, Glasgow, UK.