Spontaneous loss and transfer of plasmid-mediated K21 antigen synthesis in *Klebsiella pneumoniae*

JG BARR

From the Department of Clinical Bacteriology, Royal Victoria Hospital, Belfast BT12 6BA, Northern Ireland

SUMMARY Five epidemiologically related urine isolates of *Klebsiella pneumoniae* (sensu lato), capsular serotype K21, may spontaneously lose the ability to synthesise K21 antigen in vitro and in vivo. Another four isolates of *K. pneumoniae* K21+, epidemiologically unrelated to the other five, did not exhibit this effect. Elimination of the ability to synthesise K21 antigen may be enhanced by treatment with acridine orange. Transfer of K21 antigen synthesis from *K. pneumoniae* to *Escherichia coli* K12 was observed in eight independent experiments. Elimination from or acquisition of the ability to synthesise K21 antigen is not accompanied by changes in the antibiotic sensitivity patterns or biochemical characteristics of bacteria.

During 1978 a cluster of isolates of *Klebsiella pneumoniae* (sensu lato), capsular type K21, was detected in an orthopaedic ward during routine surveillance of Gram-negative bacterial colonisation and infection. Each of five catheter specimens of urine from this unit yielded two morphologically distinguishable bacterial colonies, which both proved to be *K. pneumoniae* (sensu lato) isolates of the same biotype when examined by conventional means. The occurrence of a mixed growth of different genera or species, or even of the same species, from urine of long-term catheterised patients is in itself not unusual and may result from sequential colonisation by different bacteria. However, the occurrence of two isolates of the same *Klebsiella* species and biotype in each of five epidemiologically related specimens suggested that another more plausible interpretation was likely.

Subsequently, pairs of isolates from single urine specimens were shown to differ in their production of capsular antigen K21. Further investigations were carried out to determine whether the determinants for K21 antigen synthesis were carried on a transmissible plasmid.

Material and methods

CULTURES Each of five catheter urine specimens (U53, U95, U106, U124, U214) yielded two klebsiella isolates distinguishable by colony morphology. In each case a large mucoid colony type (U53/1, U95/1, etc) and a smaller non-mucoid colony type (U53/2, U95/2, etc) could be recognised. Rifampicin-resistant, non-mucoid klebsiella strains for use in transfer experiments were derived from klebsiella isolates U53/2 and U95/2 by passage in rifampicin broth. Rifampicin-resistant mucoid klebsiella strains were selected from klebsiella isolates U53/1 and U95/1 by the same method.

DONOR STRAINS Five mucoid isolates of *K. pneumoniae* K21+ (U53, U95, U106, U124, U214) were used as donor strains.

RECIPIENT STRAINS A spontaneous mutant of *Escherichia coli* K12, resistant to rifampicin and naladixic acid, was kindly supplied by Dr H Williams Smith, of Houghton Poultry Research Station. Either a smooth or rough colony strain, derived from this culture, served as recipient in most transfer experiments. The rough strain (API 20E; 1 044 512) could be differentiated from the smooth strain (API 20E; 5 044 512) by the absence in the former of lysine decarboxylase activity.

In some transfer experiments, rifampicin-resistant, non-mucoid klebsiella strains U53/2 and U95/2 served as recipients.

BIOCHEMICAL TYPING Klebsiella isolates were biotyped by the methods of
Spontaneous loss and transfer of plasmid-mediated K21 antigen synthesis in Klebsiella pneumoniae

Barr and Rennie and Duncan, and by a commercially available system (API-20E). Another commercially available system, AP1-50E, includes 50 biochemical tests, the majority relating to the fermentation of different carbon substrates. The biochemical identity of some strains was confirmed using this system.

The method of Rennie and Duncan included the following tests: indole production, acetoin production, citrate utilisation, lactose and sucrose fermentation, malonate and gluconate utilisation, dulcitol fermentation, lysine and ornithine decarboxylase, and urease activity. Positive and negative results were computed to yield a three-digit code for each biotype.

Biochemical typing was also carried out by a method which discriminates between strains on the basis of acid accumulation from the metabolism of five substrates (xylene, glucose, lactose, inositol, glycerol), each at two concentrations. For each substrate, at two concentrations, three results were possible: test results positive at both concentrations, denoted '2'; test results positive only at the higher concentration, denoted '1'; and test results negative at both concentrations, '0'. Results were recorded in the following order, viz, glycerol, inositol, lactose, glucose, and xylose. This yielded for each strain a five-digit code.

Capsular serotyping was carried out on cultures grown for 18 hours at 37°C on Worfel-Ferguson agar and sensitivity test agar (DST agar; Oxoid) supplemented with 5% lysed blood. Sensitivity test agar supported the production of more capsular polysaccharide by E. coli transconjugants than other media.

Slide agglutination tests and Quellung reactions were carried out as described by Casewell except that K21 serum (Difco) was used neat, as well as in a 1/8 dilution. The serum was used either absorbed or unabsorbed, depending on the culture being examined. Counter immunoelectrophoresis (CIE) was kindly carried out at Coventry Public Health Laboratory by the methods described by Palfreyman. Some Quellung reactions were also confirmed by that laboratory.

Elimination of K21 antigen synthesis

Nutrient broth (Oxoid No 2) was inoculated with single colonies of either rifampicin-sensitive or rifampicin-resistant mucoid cultures of klebsiella strains U53/1 or U95/1. After 16 hours' incubation at 37°C, cultures were diluted to 10^4 cells per ml in nutrient broth, with or without acridine orange (20 mg/l), and incubated for a further 16 hours at 37°C. Appropriate dilutions were plated out to obtain non-confluent growth on MacConkey agar, with or without rifampicin (150 mg/l), and colonies were selected for study on the basis of colonial morphology and colour.

Mating procedures

Small amounts (0.5 ml) of 3-hour broth cultures of the donor and recipient cultures were mixed into 5 ml of fresh nutrient broth (Nutrient Broth; No 2 Oxoid) and grown together for 16 hours. Small volumes (0.1 ml) of an appropriate dilution (10^-3) were plated out on MacConkey agar containing rifampicin (150 mg/l), to which the recipient was resistant. This normally yielded between 150 and 400 colonies, from which several K21 transconjugant colonies could be selected for purification, capsular serotyping, and biochemical typing on the basis of colonial morphology.

Pure broth cultures of donor and recipient strains were treated in the same way and served as controls. Colonies were selected at random, from recipient control plates, for agglutination tests.

Antibiotic sensitivity tests

Antibiotic sensitivity testing was carried out by a comparative method using sensitivity test agar (DST agar; Oxoid) supplemented with 5% lysed blood.

Sensitivity to the following antibiotics was determined: nitrofurantoin (NR), gentamicin (G), kanamycin (K), cephalothin (KF), tetracycline (T), sulphonamethoxazole (S), trimethoprim (W), ampicillin (A), and nalidixic acid (NA).

Results

Origin and recognition of mixed Klebsiella growth in urine

Urine specimens from five catheterised patients in an orthopaedic ward yielded mixed growths of two distinguishable colony types, which were both identified by routine methods to be Klebsiella spp. In each case a large, raised, mucoid, pink colony, 3-5 mm in diameter, could be distinguished from a flat, non-mucoid, red colony of 1-2 mm in diameter on MacConkey agar. On routine subculture the smaller non-mucoid colony remained pure in cultural characteristics. Repeated subculture of the mucoid colony invariably yielded a small number of colonies of the other type.

An environmental swab, prompted by an epidemiological investigation in the same ward at a later date, also yielded a mixture of the two colony types.
Characteristics of mucoid and non-mucoid Klebsiella strains

The biochemical type, serotype, and antibiotic sensitivity patterns of mucoid and non-mucoid Klebsiella isolates from five urine specimens are shown in Table 1.

Within each urine specimen, pairs of isolates were of the same conventional biotype and had the same antibiotic sensitivity pattern. Pairs of isolates from single urine specimens were also identical in the wider range of tests provided by API-50E but could be distinguished by the biochemical typing method described by Barr and by the presence or absence of capsular antigen K21 (Table 1).

The ability to synthesise K21 antigen was lost without accompanying changes in conventional biochemical tests or antibiotic resistance pattern. This phenomenon was noted here in strains showing different resistance patterns; in two strains, U95/1 and U106/1, the capacity for transfer of antibiotic resistance to E. coli K12 has previously been noted.

Elimination of Ability to Synthesise Capsular Antigen K21

K21- colonies were derived spontaneously at low rate from five epidemiologically related K. pneumoniae K21+ cultures U53/1, U95/1, U106/1, U124/1, and U214/1. Rifampicin-resistant cultures of U53/1 and U95/1 spontaneously yielded rifampicin-resistant K21- colonies at a similar rate. The culture of two selected mucoid strains U53/1 and U95/1 in broth containing acridine orange increased the yield of K21- colonies in each case (Table 2).

Four epidemiologically unrelated strains of K. pneumoniae K21+, isolated from other wards during the period of this study, did not spontaneously lose their ability to synthesise K21 antigen. Acridine orange did not induce elimination of capsule antigen synthesis in these cultures.

Transfer of Ability to Synthesise K21 Antigen

Spontaneously derived non-mucoid K21- cultures, U53/2 and U95/2, rifampicin-resistant, served as recipients for the determinant of K21 antigen synthesis with mucoid K21+ strains of K. pneumoniae, U53/1 and U95/1, as donors. No transfer could be detected when crosses were plated on rifampicin MacConkey agar. No colonies showed morphological or other phenotypic characteristics of the K21+ parent, and no colonies tested agglutinated in K21 serum.

In independent experiments, both smooth and rough forms of a spontaneous mutant of E. coli K12,

Table 1

<table>
<thead>
<tr>
<th>Klebsiella strain No.</th>
<th>Biochemical type</th>
<th>Capsule serotype</th>
<th>Antibiotic resistance*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NT = not typable
ND = not done.
CIE = counterimmunoelectrophoresis
*See text for antibiotic abbreviations.

Table 2

<table>
<thead>
<tr>
<th>Strain</th>
<th>Acridine orange (mg/l)</th>
<th>Number of colonies examined</th>
<th>Yield of K21+ colonies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Four K21+ urine isolates of K. pneumoniae epidemiologically unrelated to U53, U95, etc.
Spontaneous loss and transfer of plasmid-mediated K21 antigen synthesis in Klebsiella pneumoniae

resistant to rifampicin and naladixic acid, served as a recipient for the determinant for K21 antigen synthesis. In matings with both these strains, five epidemiologically related and four unrelated recipient for resistant strains of E. coli were selected. The transfer of antibiotic resistance, although a transfer of antibiotic resistance from K. pneumoniae U95/1 to E. coli K12 had previously been demonstrated.

The percentage of mucoid E. coli colonies was about 1% in each of three matings between the smooth form of E. coli K12 and K. pneumoniae U53/1 and U95/1, in the rough form of E. coli K12 and K. pneumoniae U53/1, could the presence of capsular antigen K21 in the transconjugant E. coli K12 be demonstrated. The transfer of capsular antigen K21 was obtained independently on eight occasions. In all cases larger irregular, slightly mucoid colonies were detected in a non-confluent lawn of the recipient E. coli K12.

Table 3 Characteristics of K21+ donor K. pneumoniae and recipient and transconjugant E. coli K12 strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Biochemical type</th>
<th>Antibiotic resistance*</th>
<th>Capsular serotype</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rennie and Duncan</td>
<td>AP1-20E</td>
<td>Substrate metabolism</td>
</tr>
<tr>
<td>Donor K. pneumoniae U53/1</td>
<td>112</td>
<td>5 215 773</td>
<td>11222</td>
</tr>
<tr>
<td>Recipient E. coli K12, smooth</td>
<td>—</td>
<td>5 044 512</td>
<td>00122</td>
</tr>
<tr>
<td>Transconjugant E. coli K12</td>
<td>—</td>
<td>5 044 512</td>
<td>00122</td>
</tr>
<tr>
<td>Donor K. pneumoniae U95/1</td>
<td>112</td>
<td>5 215 773</td>
<td>11222</td>
</tr>
<tr>
<td>Recipient E. coli K12, smooth</td>
<td>—</td>
<td>5 044 512</td>
<td>00122</td>
</tr>
<tr>
<td>Transconjugant E. coli K12</td>
<td>—</td>
<td>5 044 512</td>
<td>00122</td>
</tr>
<tr>
<td>Donor K. pneumoniae U53/1</td>
<td>112</td>
<td>5 215 773</td>
<td>11222</td>
</tr>
<tr>
<td>Recipient E. coli K12, rough</td>
<td>—</td>
<td>1 044 512</td>
<td>00122</td>
</tr>
<tr>
<td>Transconjugant E. coli K12</td>
<td>—</td>
<td>1 044 512</td>
<td>00122</td>
</tr>
</tbody>
</table>

*See text for antibiotic abbreviations.
CIE = counterimmunoelectrophoresis
NT = not typable

Discussion

The two colonial types isolated from each of five urines differ in production of capsular antigen K21. They do not, as shown in Table 1, differ in their antibiotic sensitivity pattern or in conventional biotype. Differences in biotype, as determined by differential substrate metabolism, have, however, been noted (Table 1), but these could be interpreted as due to phenotypic changes resulting from differences in uptake and metabolism of substrates and excretion of metabolic products by mucoid and non-mucoid strains. In a comparable situation, Ørskov and Ørskov reported that E. coli strains cured of K88 antigen synthesis could be recognised by a difference in colour, characteristic of pH value change on bromothymol blue lactose agar.

Mucoid klebsiella strains could be spontaneously cured of capsule antigen synthesis independently of changes in biochemical or antibiotic resistance.
markers. Elimination of the ability to synthesise K21 antigen was enhanced by treatment with acridine orange, which advances the view that the determinants for K21 synthesis are borne on an extrachromosomal particle, a plasmid. This, however, is not necessarily a characteristic of K21+ strains of K. pneumoniae in general since other strains, epidemiologically unrelated to the ones considered here, did not show elimination of capsule antigen synthesis in the presence or absence of acridine orange.

The ability to synthesise K21 antigen may be transferred at low rate from mucoid K. pneumoniae strains to E. coli K12. The percentage of positive K21+ E. coli K12 colonies was about 1% in each of the eight cases in which transfer occurred. Transfer to K21+ cultures of K. pneumoniae derived by spontaneous elimination of K21 antigen from mucoid K21+ strains was not detected. However, a more exhaustive examination of recipients for transconjugants, and the use of other klebsiella strains as recipients for K21 antigen synthesis, could be profitable.

It has been shown here that spontaneous loss of capsular antigen synthesis may occur in vivo and in vitro and may simulate mixed infection or colonisation in patients. In this laboratory, klebsiella isolates without capsule antigen synthesis are rarely encountered in pure growth in clinical specimens. Those that have been recorded have been epidemiologically unrelated to and of a different biochemical type from the K21− and K21+ strains described in this paper. Indeed, non-capsulated strains K21− of the biotype noted in the cultures described here, have been isolated only in mixtures in clinical specimens with the homologous K21+ strains, suggesting that it is unlikely that K21− strains of this biochemical type are as effective colonisers as their capsulated counterparts.

This report establishes that transferable plasmid-mediated K21 antigen synthesis may occur in K. pneumoniae (sensu lato). Further investigations may demonstrate that the determinant for capsule antigen K21 may be transmissible to other klebsiella strains as well as to E. coli K12. This would certainly be of interest, since in some series of klebsiella isolates9 capsular serotype K21 is prevalent. In a later investigation,10 capsular type K21 comprised 42-0% of klebsiella isolates derived from hospitals in the United Kingdom. This prevalence could possibly arise from transmission of the determinant for K21 antigen synthesis among klebsiella strains and/or by an especial ability of this serotype to colonise and infect patients.

I wish to thank Professor RR Gillies for constructive criticism of the paper, Miss L Stewart and Miss C Kelly for preparation of the text, and Dr PR Mortimer and Miss JM Palfreyman, Coventry Public Health Laboratory, for their assistance.

References

Requests for reprints to: Dr JG Barr, Department of Bacteriology, Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BA.