Letters to the Editor

Whole blood filtration

Since the article "Effect of total leucocyte count on whole blood filterability in patients with peripheral vascular disease," by MJ Alderman, Anne Ridge, AA Morley, RG Ryall and JA Walsh, refers to both our method of red cell filtration (RCF) and our findings in peripheral vascular disease, we would like to comment.

The original method, developed in our laboratory in 1975, has a number of drawbacks. In addition to the influence of white blood cells (WBC) correctly observed by the authors of the recent article in your journal, it submits the red cells to unphysiologically high shear stresses and also can be affected by red cell aggregation.

For this and other reasons, we have modified our technique in 1979, the three most important changes being: (i) the absence of external pressure; (ii) the reduction of WBC and platelets in the sample to be filtered; and (iii) the use of a 5% red cell suspension for filtration. Under these conditions using lithium heparin as anticoagulant, we find the reproducibility increased and the assessment of the in vivo deformability is probably better. The influence of WBC can still be demonstrated by this method if the white cells are added artificially to the sample (unpublished data). However, the preparation of the sample includes the elimination of at least 75% of the WBC (unpublished data). In this context, it is noteworthy that the authors had to use WBC concentrations outside the physiological range in order to demonstrate the influence of WBC on RCF. In pathologically high concentrations, WBC represent a potential blocker not only for the in vitro test, but also for the microcirculation in vivo.

The finding that RCF is reduced in peripheral vascular disease has been reported by us and others. When eliminating the effect of WBC, the RCF of claudicans is still impaired (and its own unpublished data). Hence, we cannot confirm the authors' observation that the decrease of RCF is abolished when correcting for a standard WBC count.

JA DORMANDY
ERNST
St James’ Hospital,
Sarsfield Road,
Balham,
London SW12 8HW

References


Dr MJ Alderman and his colleagues reply as follows:

In reply to Drs Dormandy and Ernst, we believe that the original technique of whole filtration, introduced by Dormandy's group, was potentially a very attractive means of estimating a physiological...
M. J. ALDERMAN
AA MORLEY
RG RYALL

Departments of Haematology and Surgery,
Flinders Medical Centre,
Bedford Park,
South Australia 5042

References


Megakaryocytes in serous effusions

We read with interest the paper "Megakaryocytes in pleural and peritoneal fluids: prevalence, significance, morphology, and cytological correlation" by Kumar and Naylor.¹ The authors searched specimens of pleural, peritoneal, and pericardial fluids for megakaryocytes. However, they did not find any in pericardial fluid. In two patients with agnogenic myeloid metaplasia (AMM) foci of haemopoiesis on serous surfaces were found at necropsy. In patient 1 the diaphragmatic pleura and heart were affected by AMM but there was no comment about the presence of pericardial effusions or foci of haemopoiesis on the pericardium.

We have recently had the opportunity of studying a patient with AMM and persistent pericardial effusion. The pericardial fluid contained more than 10 megakaryocytes per slide. Death occurred fifteen days after pericardiocentesis; foci of haemopoiesis on pericardium were found at necropsy and were the cause for the megakaryocyte-containing effusion.

The pericardium, therefore, must be added to those rare serous locations of extramedullary haemopoiesis found in AMM. Although less frequent than pleural and peritoneal such pericardial location may have clinical and diagnostic relevance.

J Vilaseca
JM Arnao
N Tallada
A Salas
Departamentos de Medicina Interna y Anatomia Patológica de la "Ciudad Sanitaria de Valle de Hebron," Barcelona, Spain

Evacuated tubes for monitoring heparin treatment

I read with interest the paper by Professor Heyns and his colleagues of the Orange Free State University, South Africa, entitled "Unsuitability of evacuated tubes for monitoring heparin therapy by activated partial thromboplastin time" which appeared in the January issue.¹

Although the conclusions of the authors were valid three to four years ago, they are certainly not true today for the Becton, Dickinson Vacutainer brand Blood Collection System.

In 1977, Becton, Dickinson and Company recognised the difficulties one could encounter in the use of evacuated blood collection systems to monitor heparin concentrations in patients by means of the activated partial thromboplastin time (APTT), and set up a programme of product improvement to overcome the problem.

The problem and subsequent solution, was to lie in the stopper formulation. The isoprene-stoppered tubes exhibited sporadic shortening of APTT's on heparinised plasmas and this was attributed to the extraction of divalent cations (calcium and zinc) from the surface of the stoppers. This serious clinical limitation to the use of the Vacutainer brand Blood Collection System motivated the Vacutainer Systems Division to commission a new neobutyl rubber stopper formulation which was compatible with heparin treatment monitoring procedures.

The new improved Vacutainer brand tube with neobutyl rubber formulation stopper was extensively tested in their own laboratories by the in vitro addition of known quantities of heparin, and in hospitals on patients receiving heparin intravenously. These studies showed no significant differences between aged neobutyl rubber formulation stoppered Vacutainer tubes and prepared controls.²³

Three of the lots of Vacutainer brand tubes used by Professor Heyns and his colleagues (lots 7L071, 8A063, C814L022) were manufactured with isoprene stopper materials discarded by Becton, Dickinson and Company in October 1978. Con-