Distribution pattern of lysosomal granules in fibroblasts of the Chediak-Higashi syndrome

K Abe, S Arashima, M Honma

From the Department of Anatomy and Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan

SUMMARY Cultured fibroblasts from a patient with the Chediak-Higashi syndrome, the mother of the patient, and a normal control were studied by light and electron microscopy. The distribution pattern of PAS-positive and acid phosphatase-containing granules in the cytoplasm differed significantly in the fibroblasts from the patient when compared with those from the mother and control. The granules in the fibroblasts from the patient were clustered in the perinuclear area, whereas the granules in the fibroblasts from the mother and control were dispersed throughout the cytoplasm. After incubation with ascorbic acid, the clustered granules in the fibroblasts of the Chediak-Higashi syndrome showed a tendency to spread throughout the cytoplasm. The distribution pattern of the granules was studied by quantitative morphology.

The Chediak-Higashi syndrome is a rare genetic disorder characterised by the presence of abnormally large inclusions in polymorphonuclear leucocytes. Certain mutants of Aleutian minks and beige mice are known to be homologues of the Chediak-Higashi syndrome in humans. Although the pathogenesis of this syndrome remains uncertain, recently it has been reported that the Chediak-Higashi syndrome shows abnormal function of microtubules, and the function is restored by ascorbic acid. The pathogenesis of some genetic disorders has been explained with cell culture. Abnormally large inclusions have been observed in cultured fibroblasts from a patient with the Chediak-Higashi syndrome and beige mice. Thus, a culture of the fibroblasts derived from the patient with the Chediak-Higashi syndrome may be useful for understanding its pathogenesis.

We recently had a patient with the Chediak-Higashi syndrome. The case showed abnormal inclusions in the polymorphonuclear leucocytes and lymphocytes, and died 110 days after birth. From skin biopsy of the patient, we established the cell lines of fibroblasts, and the cultured fibroblasts showed characteristic distribution pattern of lysosomal granules. In this study, the cultured skin fibroblasts of the Chediak-Higashi syndrome, and the effects of ascorbic acid on the fibroblasts were examined cytologically.

Accepted for publication 7 September 1981

Material and methods

Skin fibroblasts from a 95-day-old girl with the Chediak-Higashi syndrome, a 26-year-old mother of the patient, and a 37-year-old healthy male as a control were cultured in monolayer on cover slips. The fibroblasts were grown in Eagle's medium with 15% calf serum. Eight different subcultures out of 26 subcultures in each cell line were examined at the second day of the culture by light and electron microscopy.

Fibroblasts on the cover glasses were fixed with 2% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) at 4°C for between 30 min and two hours. For light microscopy, they were stained with periodic acid-Schiff reagent (PAS) and haematoxylin, or reacted by Gomori's method for acid phosphatase. Some of them were stained with Giemsa, toluidine blue, or Sudan black B. For electron microscopy, after fixation with glutaraldehyde, they were fixed with 2% OsO₄ in 0.1 M cacodylate buffer (pH 7.4) at 4°C for one hour and embedded in Epon. Ultrathin sections were stained with uranyl acetate and lead citrate, and examined by electron microscopy.

Effects of ascorbic acid

Fibroblasts from the patient, mother of the patient, and the control were incubated in the medium containing 0.1, 1, 10, or 100 mM ascorbic acid for 15 min before fixation and examined by light microscopy. Two cultures for each source were examined.
Fibroblasts of Chediak-Higashi syndrome

Results

The cultured fibroblasts showed no significant differences in cellular shape and number for the cultures derived from the patient with the Chediak-Higashi syndrome, the mother of the patient, and the healthy control (Figs. 1-3). They were spindle-shaped or stellate with a few cytoplasmic processes, and the nuclei were oval and had several nucleoli. The cytoplasm contained a large number of small granules which were PAS-positive and showed acid phosphatase activity (Figs. 1-3). These granules were not stained with Giemsa, toluidine blue, or Sudan black B. The distribution of these cytoplasmic granules in the fibroblasts, however, exhibited significant differences between the fibroblasts derived from the patient and those from healthy individuals.

In the fibroblasts from the control and the mother of the patient, the granules were dispersed throughout the cytoplasm, and also appeared in the long cytoplasmic processes (Figs. 1, 3). On the other hand, the granules in the fibroblasts derived from the patient were clustered adjacent to the nucleus or around the nucleus (Figs. 2, 3). Even after repeated subcultures, the clustered pattern of the granules were observed in the fibroblasts from the patient.

In electron microscopy, the cytoplasm of the fibroblasts contained many membrane-bounded inclusions, 0.1 to 2.0 μm in diameter, which were round or oval and had variable contents (Fig. 4a). Ultrastructural differences of the inclusions were not noticed for the fibroblasts from different sources. The inclusions appeared throughout the cytoplasm except for the Golgi area in the fibroblasts from the healthy individuals. In the fibroblasts from the patient, the inclusions appeared around the Golgi apparatus near the nucleus, and almost no inclusions were observed in the peripheral cytoplasm (Fig. 4a). Microtubules and filaments were observed through-
out the cytoplasm and in the centriolar region of the fibroblasts from the patient and healthy individuals (Fig. 4bc). The shape, amount, and distribution of microtubules were not different for the fibroblasts derived from the different sources.

**QUANTITATIVE EVALUATION OF THE DISTRIBUTION PATTERN OF THE GRANULES**
The differences in the distribution pattern of the granules in the fibroblasts were studied quantitatively as follows. The fibroblasts were divided into four classes according to the width of the perinuclear cytoplasm containing the granules, as shown in Fig. 5. The fibroblasts in which the width was narrower than half the nuclear diameter, equal to the nuclear diameter, twice the nuclear diameter, or wider than twice the nuclear diameter were classified as class 1, 2, 3, or 4, respectively. The percentage ($P_i$) of the fibroblasts of each class cut out of the total fibroblasts counted in each culture was obtained (Table). Furthermore, an index indicating...
Fibroblasts of Chediak-Higashi syndrome

Proportion of fibroblasts in each class representing the distribution pattern of lysosomal granules mean (%); ranges are in parentheses

<table>
<thead>
<tr>
<th>Class</th>
<th>N</th>
<th>CHSM</th>
<th>CHS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0 (0-2)</td>
<td>0.6 (0-1)</td>
<td>76.0 (64-86)</td>
</tr>
<tr>
<td>2</td>
<td>13.5 (5-21)</td>
<td>14.0 (8-21)</td>
<td>20.0 (12-28)</td>
</tr>
<tr>
<td>3</td>
<td>48.0 (38-61)</td>
<td>48.7 (44-53)</td>
<td>4.1 (2-8)</td>
</tr>
<tr>
<td>4</td>
<td>37.5 (24-56)</td>
<td>36.7 (29-42)</td>
<td>0.3 (0-1)</td>
</tr>
</tbody>
</table>

CHS  = patient with Chediak-Higashi syndrome.
CHSM = patient's mother.
N    = normal control.

The distribution pattern of the granules in the fibroblasts for each culture was represented by
\[ \sum_{i=1}^{4} (i - 1) P_i/3 \]. The index becomes 0 if all fibroblasts belong to class 1, or 100 if all fibroblasts belong to class 4.

As seen in the Table and Fig. 6, in the culture from the mother and the control, half the fibroblasts were included in class 3, and the fibroblasts in class 4 were also frequent, whereas those in class 1 and 2 were rare. However, the fibroblasts from the patient were mostly in class 1, but rare in class 3 and 4. The index (average) of the distribution pattern of the granules was 75 for the culture from the mother, 74 for the control, and 9-4 for the Chediak-Higashi syndrome (Fig. 7). Thus, the distribution pattern of the cytoplasmic granules showed quantitatively significant differences between the fibroblasts from the patient with the Chediak-Higashi syndrome and those from the other sources.

Effects of ascorbic acid
With increasing dose of ascorbic acid, some fibroblasts were rounded on the glass and left from the surface of the glass. After incubation with 100 mM ascorbic acid, about a quarter of the fibroblasts were spreading and the others were rounded on the glass. The cytoplasmic granules, mentioned above, were recognised in the fibroblasts spreading on the glass. The distribution pattern of the granules in the control fibroblasts treated with ascorbic acid was similar to that in the fibroblasts cultured without ascorbic acid (Figs. 6, 7). With increasing dose of ascorbic acid, the fibroblasts from the Chediak-Higashi syndrome showed a decrease of percentage of the cells in class 1 (Fig. 6), the clustered granules tended to spread throughout the cytoplasm, and the index showed an increase (Fig. 7).

Discussion
Oliver et al, who analysed the function of microtubules using cells from normal and beige mice, observed lysosomal granules clustered in the perinuclear area of the cultured fibroblasts from beige mice, and the granules dispersed throughout...
the cytoplasm in the normal fibroblasts. We noticed
similar findings in the cultured fibroblasts from a
patient with the Chediak-Higashi syndrome and
normal individuals. The presence of acid phos-
phatase in the PAS-positive granules in our cultured
fibroblasts indicates that the granules are lysosomal.13
These lysosomal granules in the Chediak-Higashi
fibroblasts were clustered adjacent to the nucleus,
whereas those in the normal fibroblasts were dis-
tributed throughout the cytoplasm. Thus, the Chediak-
Higashi fibroblast cultures were readily distinguished
from the others.

It is said that lysosomes arise from the Golgi
apparatus and are scattered in the cytoplasm like
secretory granules.14 It has been known that cellular
movement and intracellular migration of secretory
granules, organelles, and inclusions depend on the
function of microtubules and microfilaments.15
However, recent studies concerning the Chediak-
Higashi syndrome have suggested that impaired
bacteriocidal activities and chemotaxis of poly-
morphonuclear leucocytes, and abnormal migration
of concanavalin A receptor complexes on the poly-
morphonuclear leucocytes are due to abnormal
microtubular assembly in the syndrome.16-19 There-
fore, genetic disorder of the Chediak-Higashi
syndrome seems to be included in the intracellular
mechanism regulating microtubular assembly. Mor-
phologically it has been reported that no micro-
tubules were detectable in the centriolar region of
the polymorphonuclear leucocytes in the Chediak-
Higashi syndrome,6 but microtubules in our Chediak-
Higashi fibroblasts seemed normal in number and
structure. Thus, the cluster of the granules in the
fibroblasts from the patient indicate dysfunction of
microtubules in the Chediak-Higashi syndrome.

In this study, we used the index to express the
distribution pattern of the granules in the fibroblasts,
and the index clearly differentiated the Chediak-
Higashi fibroblasts from the mother’s or normal
fibroblasts. The index of the Chediak-Higashi
fibroblasts rose towards the normal level after

treatment with ascorbic acid, which is reflected in
improved microtubular function.20 Therefore, the
index for the distribution pattern of lysosomal
granules in cultured fibroblasts is considered to be
useful for the study of the impaired function of
microtubular assembly in the Chediak-Higashi
syndrome; it may also suggest the degree of the
disease.

The index in the fibroblasts from the mother,
carrier of the abnormal gene, showed a normal level.
On the other hand, Danes and Bearn21 observed large
inclusions in the cultured fibroblasts from the
parents of the patient, and recommended cell
culture in detecting the carrier. Such inclusions were
not shown in our Chediak-Higashi fibroblasts.
Abnormally large inclusions shown by them21 seem
slightly different in stainability from the granules
in our fibroblasts. The differences between our
fibroblasts and those observed by Danes and Bearn21
may be related to differences in the onset of the
disease. Their fibroblasts were obtained from a
14-year-old patient, while our patient died 110 days
after birth. However, large granules in the cultured
fibroblasts from beige mice were prominent in
confluent cultures in 10 to 14 days,8 and it was
suggested that such abnormal granules arose by
fusion of developing granules.21 We observed the
fibroblasts in two days of subculture. The granules
in our Chediak-Higashi fibroblasts may become
larger in confluent culture.

It is hoped that the fetal genetic diseases can be
diagnosed during early pregnancy,10,22 but the
value of amniocentesis in Chediak-Higashi syndrome
has not been established. The perinuclear congrega-
tion of the lysosomal granules in the fibroblasts of
the Chediak-Higashi syndrome persists during
repeated subculture. Cultured cells usually contain
such granules. Therefore, the amniotic cell culture,
in which fibroblast-like cells and epithelial cells
grow,23 is also considered to be useful in prenatal
diagnosis of the syndrome.

References
1. Chediak MM. Nouvelle anomalie leucocytaires caractéristiques
2. Higashi O. Congenital giantism of peroxidase granule—
   first case ever reported of qualitative abnormality of
3. Douglas SD, Blume RS, Wolff SM. Fine structural studies
   of leukocytes from patients and heterozygotes with
4. Lutzner MA, Tierney JH, Benditt EP. Giant granules and
   widespread cytoplasmic inclusions in a genetic syndrome
   of Aleutian mink: an electron microscopic study. Lab Invest
   1966;14:2063-79.
5. Bennett JM, Blume RS, Wolff SM. Characterisation and
   significance of abnormal leukocyte granules in the
   beige mouse: a possible homologue for Chediak-Higashi
6. Oliver JM, Krawiec JA, Berlin RD. Carbamylcholine
   prevents giant granule formation in cultured fibroblasts
   from beige (Chediak-Higashi) mice. J Cell Biol 1976;
   69:205-10.
7. Boxer LA, Watanabe AM, Rister M, Besch HR Jr, Allen J, Baehner
   RL. Correction of leukocyte function in Chediak-Higashi
8. Leory JG, De Mars RI. Mutant enzymatic and cytological
   phenotypes in cultured human fibroblasts. Science
9. Wiesman UN, Herschkowitz NN. Studies on the pathogenetic
   mechanism of I-cell disease in cultured fibroblasts.
10. Abe K, Matsuoka I, Arashima S, Mitsuyama T, Oka Y, Ishikawa M. Ultrastructural studies in fetal I-cell
Fibroblasts of Chediak-Higashi syndrome


Requests for reprints to: Dr K Abe, Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060 Japan.