Letters to the Editor


References


Separate or combined disk agar diffusion techniques in cotrimoxazole sensitivity testing and use of single versus combination therapy

The report of SGB Aymes and WA Telfer Brunton in your issue of February 1981 showed data remarkably similar to ours (Table). We tested 284 bacterial isolates for sensitivity to cotrimoxazole, sulfa-diazine and trimethoprim by the disk diffusion agar-overlay method. Antibiotic disks were commercially prepared (Mast Laboratories, England), and contained 250 μg sulfadiazine, 23-75 μg sulfa-methoxazole plus 1-25 μg trimethoprim (cotrimoxazole) or 1-25 μg trimethoprim.

Of the strains sensitive to cotrimoxazole, 72% were sensitive to sulfadiazine alone, 87% to trimethoprim alone and only 1% to the combination alone. Of the 173 isolates of Escherichia coli and Klebsiella pneumoniae which were susceptible to cotrimoxazole, 98% were sensitive to trimethoprim alone. Although we did not study synergistic effects in great detail, we did observe that with organisms sensitive to cotrimoxazole, resistant to sulfadiazine and sensitive to trimethoprim, the zone diameters of inhibition around the cotrimoxazole and trimethoprim disks were identical.

In view of our findings, and those of Aymes and Telfer Brunton, there is certainly a place for the laboratory testing of sulfa and trimethoprim sensitivities singly. Since most organisms are sensitive to either sulfadiazine or trimethoprim, a case could certainly be made for using single drug therapy in different clinical situations.

BERNARD RUDENSKY

Department of Clinical Microbiology, Shaare Zedek Medical Center, Jerusalem, Israel

In vitro susceptibility of bacterial strains to cotrimoxazole, sulfa and trimethoprim

<table>
<thead>
<tr>
<th>Organism</th>
<th>Strains tested</th>
<th>Strains (%) sensitive to cotrimoxazole, sulfa and trimethoprim</th>
<th>Strains (%) sensitive to cotrimoxazole and sulfadiazine and trimethoprim</th>
<th>Strains (%) sensitive to cotrimoxazole, resistant to sulfa and trimethoprim</th>
<th>Strains (%) resistant to cotrimoxazole, sulfa and trimethoprim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli</td>
<td>146</td>
<td>77 (53)</td>
<td>0 (0)</td>
<td>43 (29)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>71</td>
<td>39 (55)</td>
<td>4 (6)</td>
<td>10 (14)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Enterobacter spp</td>
<td>22</td>
<td>16 (23)</td>
<td>4 (18)</td>
<td>1 (5)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>24</td>
<td>2 (4)</td>
<td>16 (70)</td>
<td>1 (4)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Proteus spp</td>
<td>10</td>
<td>3 (30)</td>
<td>0 (0)</td>
<td>3 (30)</td>
<td>1 (10)</td>
</tr>
<tr>
<td>Shigella spp</td>
<td>12</td>
<td>4 (33)</td>
<td>0 (0)</td>
<td>8 (67)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Total</td>
<td>285</td>
<td>141 (50)</td>
<td>27 (10)</td>
<td>63 (22)</td>
<td>3 (1)</td>
</tr>
</tbody>
</table>