Microdeposits of amyloid in sclerocalcific heart valves: a histochemical and immunofluorescence study

YA GOFFIN,* W MURDOCH,† GG CORNWELL III,† GD SORENSON†

From the *Department of Pathology, Hospital Universitaire Brugmann, Université Libre de Bruxelles, Belgium and the †Departments of Medicine and Pathology, Dartmouth Medical School, Hanover, New Hampshire, USA

SUMMARY Amyloid associated with seven sclerotic and two normal aortic and mitral valves was studied. The sclerotic valve amyloid contained microfibrils with typical random orientation and a fibril width of 9.5–12.5 nm. The amyloid deposits demonstrated permanganate-resistant Congophilia and contained the amino acid tryptophan. Immunofluorescence studies showed P-component in amyloid deposits of 6 of 7 valves, but none of the sclerotic valves contained amyloid fibril proteins of the AL (primary), AA (secondary), AEi (medullary thyroid carcinoma) or ASc1 (senile cardiac) types. Two non-sclerotic valves, removed from a patient with systemic amyloidosis, showed permanganate-sensitive Congophilic amyloid deposits which contained amyloid fibril protein AA.

The deposition of amyloid fibrils in the heart valves is a well known occurrence in the primary (AL), myeloma-associated (AL) and senile (ASc1) forms of systemic amyloidosis.1 Recently, a fourth type of valvular amyloidosis has been reported independently from four laboratories:2–5 a localised form of amyloid deposition appearing exclusively and with high incidence in sclerotic and particularly in sclerocalcific valves. The deposits are small and restricted to the areas of scarring and calcification, and their incidence does not correlate with the age of the patients. This form of amyloid is apparently of dystrophic type, but a biochemical marker of the amyloid fibrils has not yet been found. The purpose of this study was to characterise the morphological and chemical nature of dystrophic valvular amyloid.

Material and methods

TISSUES Heart valves containing amyloid were selected by the macroscopic iodine test. One sample of each positive and negative valve was fixed in 10% formalin and embedded in paraffin. Six μm sections were then stained with alkaline Congo red, and amyloid was defined by its selective apple green birefringence in polarised light.

Eight mitral and four aortic valves with the following characteristics were studied: seven sclerocalcific amyloid-laden valves; one sclerocalcific mitral valve without amyloid; one mitral and one aortic valve of normal structure, containing small deposits of amyloid from a patient with systemic reactive (secondary) amyloidosis; one completely normal mitral valve; and one completely normal aortic valve. Details of the tissues are provided in Table 1.

An additional specimen of each valve was snap frozen directly, kept at −20°C, washed in cold 0.15 M phosphate-buffered saline (PBS) at pH 7.2, fixed in ethanol and embedded in paraffin.6 Six μm sections were deparaffinised just prior to conducting histochemical or immunofluorescence studies. Initially, sections made from both frozen and paraffin blocks were studied, but since no differences were observed with the two procedures, all

Accepted for publication 28 June 1983

Abbreviations used in this paper are in part derived from guidelines adopted at the Third Symposium on Amyloidosis held in Povoa de Varzim, Portugal in September 1979: ASc = amyloid fibril protein from senile cardiac amyloid; ASOA = senile aortic amyloid; IAA = isolated atrial amyloid; HPA = human prealbumin; AA = amyloid fibril protein A; AAI, AAIV, AAVI immunoglobin light chain amyloid fibril proteins of the 1, 4 and 6 subgroups; AEi = amyloid fibril protein from medullary carcinoma of the thyroid; AP = amyloid P-component.
Table 1 Histological findings of heart valves

<table>
<thead>
<tr>
<th>Tissue no</th>
<th>Sex</th>
<th>Valve</th>
<th>Histology</th>
<th>Amyloid*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F 22</td>
<td>Mitral</td>
<td>Non-sclerotic</td>
<td>-</td>
</tr>
<tr>
<td>2+</td>
<td>M 55</td>
<td>Mitral</td>
<td>Non-sclerotic</td>
<td>+ (AA)</td>
</tr>
<tr>
<td>3</td>
<td>F 28</td>
<td>Mitral</td>
<td>Chronic rheumatic disease</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>F 51</td>
<td>Mitral</td>
<td>Sclerosis and fused commissure, aetiology unknown</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>M 49</td>
<td>Mitral</td>
<td>Chronic rheumatic disease</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>F 57</td>
<td>Mitral</td>
<td>Chronic rheumatic disease</td>
<td>+</td>
</tr>
<tr>
<td>7</td>
<td>F 52</td>
<td>Mitral</td>
<td>Sclerosis and calcification, aetiology unknown</td>
<td>+‡</td>
</tr>
<tr>
<td>8</td>
<td>F 56</td>
<td>Mitral</td>
<td>Sclerosis, aetiology unknown</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>M 46</td>
<td>Aortic</td>
<td>Non-sclerotic</td>
<td>-</td>
</tr>
<tr>
<td>10+</td>
<td>M 55</td>
<td>Aortic</td>
<td>Non-sclerotic</td>
<td>+ (AA)</td>
</tr>
<tr>
<td>11</td>
<td>F 51</td>
<td>Aortic</td>
<td>Chronic rheumatic disease</td>
<td>+‡</td>
</tr>
<tr>
<td>12</td>
<td>M 65</td>
<td>Aortic</td>
<td>Calcified bicuspid valve</td>
<td>+</td>
</tr>
</tbody>
</table>

* Amyloid determined by alkaline Congo red method.
+ Tissues no 2 and no 10 were derived from the same patient.
‡ Amyloid fibrils detected by electron microscopy.

subsequent studies were carried out with paraffin sections only.

ELECTRON MICROSCOPY

Two sclerotic mitral valves and two sclerotic aortic valves, all containing amyloid deposits, were fixed in 1% buffered osmium tetroxide, stained with uranyl acetate and embedded in Epon. Thin sections were stained with lead acetate, then examined and photographed on a Philips 201 electron microscope.

HISTOCHEMISTRY

Potassium permanganate treatment of sections prior to alkaline Congo red staining was performed by the method of Wright et al.7 Tryptophan was detected by the desoxymethylaminobenzene (DMAB) method.8 Fluorescence Congo red was performed as described below.

ANTISERA

Antisera to various amyloid fibril proteins were raised in rabbits and absorbed to specificity as previously described.9,10 Non-immune rabbit serum was used as a control. Rabbit antihuman prealbumin (HPA) and goat anti-P component (AP) were purchased from Calbiochem-Behring and Atlantic Antibodies Inc, respectively.

IMMUNOFLOUORESCENCE

Frozen and paraffin sections were studied by indirect immunofluorescence. Since sclerotic tissue displayed strong autofluorescence, tissue sections were stained with Congo red prior to incubation with antisera, in order to suppress the background fluorescence. This procedure was carried out by immersing sections in 0-05% Congo red (in 50% ethanol) for 3 s followed by washing in distilled water. Potassium hydroxide destaining was not used. Slides were then immersed at room temperature in PBS for 15 min, counterstained with 5-10 μl of appropriate antiserum dilution (generally 1/10 or 1/20), washed and stained with fluorescein isothiocyanate (FITC)-conjugated goat anti-rabbit or rabbit anti-goat IgG. This fluorescence Congo red method allowed the initial identification of amyloid by its green birefringence in polarised light and by its bright red fluorescence through a green absorption filter (Zeiss No 487715) in UV light. Amyloid identified in this way could then be examined for specific green immunofluorescence by switching directly to an FITC filter (Zeiss No 487711) using a twin-lamp Zeiss photomicroscope III.

Results

ELECTRON MICROSCOPY

Fibrils with characteristic ultrastructure of amyloid were found in the sclerotic areas of two valves of the four studied. One mitral (no 7) (Fig. 1) and one aortic (no 11) valve contained abundant microfibrils (9.5-12.5 nm width) with typical random orientation. Some fine granular material blending with the fibrils and a few collagen fibres were observed in the same areas. One sclerotic mitral valve (no 8) contained very few small fibrils and one sclerotic aortic valve (no 12) did not show any fibrils in the sections studied.

HISTOCHEMISTRY AND IMMUNOFLOUORESCENCE

The results of the histochemical and immunofluorescence studies are presented in Table 2. All amyloid deposits tested contained tryptophan. Congo red staining of amyloid associated with sclerotic valves was resistant to permanganate treatment but, as expected, amyloid of the AA type was permanganate-sensitive.

Anti-AP antiserum did not react with normal valves or the sclerotic mitral valve without amyloid. All amyloid-containing valves studied with anti-AP gave a positive reaction, except for one mitral valve (no 6). The reaction of amyloid with anti-AP was strong at the periphery of the amyloid deposits and showed a linear pattern within the deposits (Fig. 2). Vessel walls were strongly positive, whereas some collagen fibres reacted weakly.

Anti-SAA, an antiserum previously shown to react specifically with amyloid of the AA type,9 reacted strongly with amyloid of tissues no 2 (Fig. 3a, 3b, 3c, 3d) and no 10, but failed to react with other heart valves. Antisera specific for amyloid
Fig. 1 Electron micrograph of amyloid fibrils in mitral valve no 7. Note collagen fibre (arrow) × 60 000.

Table 2 Histochemical and immunofluorescence reactions of heart valves

<table>
<thead>
<tr>
<th>Tissue No</th>
<th>Histology</th>
<th>Histochemistry</th>
<th>Immunofluorescence staining with antisera to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$KMnO_4$*</td>
<td>DMAB</td>
</tr>
<tr>
<td>Mitral valves</td>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mitral valves</td>
<td>Normal + amyloid (AA)</td>
<td>S</td>
<td>+</td>
</tr>
<tr>
<td>Mitral valves</td>
<td>Sclerotic only</td>
<td>R</td>
<td>+</td>
</tr>
<tr>
<td>Mitral valves</td>
<td>Sclerotic + amyloid</td>
<td>R</td>
<td>+</td>
</tr>
<tr>
<td>Mitral valves</td>
<td>Sclerotic + amyloid</td>
<td>R</td>
<td>+</td>
</tr>
<tr>
<td>Mitral valves</td>
<td>Sclerotic + amyloid</td>
<td>R</td>
<td>+</td>
</tr>
<tr>
<td>Mitral valves</td>
<td>Sclerotic + amyloid</td>
<td>R</td>
<td>+</td>
</tr>
<tr>
<td>Mitral valves</td>
<td>Sclerotic + amyloid</td>
<td>R</td>
<td>+</td>
</tr>
<tr>
<td>Aortic valves</td>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aortic valves</td>
<td>Normal + amyloid (AA)</td>
<td>S</td>
<td>+</td>
</tr>
<tr>
<td>Aortic valves</td>
<td>Sclerotic + amyloid</td>
<td>R</td>
<td>+</td>
</tr>
<tr>
<td>Aortic valves</td>
<td>Sclerotic + amyloid</td>
<td>R</td>
<td>+</td>
</tr>
</tbody>
</table>

*R=permanganate-resistant; S=permanganate-sensitive.
†Insufficient tissue available to study for P-component.
DMAB=desoxymethylaminobenzene.
Microdeposits of amyloid in sclerocalcific heart valves

Fig. 2 Amyloid deposits in sclerotic mitral valve no 8. (a) Congo red fluorescence reaction. Original magnification × 250.
(b) Immunofluorescence reaction with anti-AP antiserum. Original magnification × 250.
fibril proteins AλI, AλIV, AλVI, ASq and AEt were non-reactive with all amyloid deposits tested. Anti-HPA was similarly free of reactivity.

Discussion

The localised amyloid deposits associated with sclerotic heart valves have several characteristics which are common to most forms of amyloid studied thus far. The deposits demonstrated typical permanganate-resistant birefringence in polarised light when stained with Congo red. To date, permanganate sensitivity has been observed only in amyloid of the AA type7 and in amyloid associated with seminal vesicles. The ultrastructure of amyloid microfibrils showed typical random orienta-

Fig. 3 Amyloid deposits in the fibrosa of non-sclerotic mitral valve no 2. (a) alcoholic Congo red reaction in ordinary light × 250. (b) in polarised light × 250. (c) Congo red fluorescence reaction utilizing green absorption filter (Zeiss no 487715) × 300. (d) immunofluorescence reaction with anti-SAA antiserum utilizing FITC filter (Zeiss no 487711) × 300.
Microdeposits of amyloid in sclerocalcific heart valves

These fibrils are somewhat larger than those reported in other forms of amyloid, but are similar in size to those recorded recently in other studies of sclerotic heart valves and in senile plaques associated with Alzheimer's disease.

This type of amyloid contained tryptophan, an amino acid which has thus far been found in all types of amyloid except those associated with insulinoma, pancreatic islets, medullary carcinoma of the thyroid, senile cardiac amyloid of the isolated atrial type, seminal vesicles and some forms of cerebral amyloid. In addition, dystrophic amyloid contained P-component (AP), a pentagonal substance which has been found to be associated with all types of amyloid studied to date. The peripheral
pattern of AP associated with dystrophic valves has been observed in other types of localised amyloidosis.16 P-component is also present in vessel walls, a finding consistent with observations that this substance binds to the microfibrillar mantle of elastic fibres in the skin and blood vessels of normal adults.17 The absence of reactivity to anti-AP of the amyloid deposition in one of the mitral valves (case 6) is not understood, since neither the clinical nor the histological findings in this patient differed significantly from those of other patients with amyloid positive sclerocalcific valves.

Sclerotic heart valve amyloid appeared chemically distinct from amyloid containing fibril proteins AA, AL (AI, AIV, AVI), AE, and AQ. These results confirm and extend the recent study of Iwata et al6 on amyloid deposits in heart valves. Using the peroxidase-antiperoxidase method, these authors confirmed that dystrophic valvular amyloid lacked fibril proteins AA and AL. Since it is known that antisera produced to whole immunoglobulin light chain may fail to detect λ or κ light chain fragments in amyloid, specific antisera produced from three subclasses of amyloid fibril protein AA were used in these studies. The lack of reaction with anti-HPA indicates that the amyloid of sclerotic heart valves differs from the generalised form of senile cardiac amyloid. The latter form of amyloid has been shown (XI, XII, XIV, XVI) that the amyloid of sclerotic heart valves indicates these findings of recent study of antisera produced to whole immunoglobulin light chain contain fluorescence. Sclerocalcific tissues fixation. However, with the exception of mature fibrils, showing little or no background staining, the phenomenon, known as autofluorescence, was eventually overcome by using fluorescence Congo red pre-staining and specific FITC immunofluorescence on the same tissue sections. This method has proved useful for locating small foci of amyloid in a background of dense fibrous tissue prior to assessing immunofluorescence reactivity.21

The discovery of a dystrophic form of heart valve amyloidosis raises the possibility that the same type of amyloid deposition could be associated with other degenerative lesions. The uniform presence of amyloid in the aging aorta21,22 suggests a mechanism of amyloidogenesis similar to that associated with atherosclerosis.22 The presence of amyloid in calcified porcine bioprostheses implanted in humans (Goffin et al, unpublished observation) may represent yet another example of amyloid deposition as an integral process in the development of, or the response to, degenerative change.

We wish to thank Joan Johnson and Kate Connolly for their excellent technical assistance and Ulla Burnham for preparation of the manuscript.

References
3 Cooper JH. Localised amyloidosis of chronically diseased heart valves. XIII International Congress of the International Academy of Pathology, Paris 1980.
Microdeposits of amyloid in sclerocalcific heart valves

Requests for reprints to: Dr YA Goffin, Department of Pathology, Hôpital Brugmann, Université Libre de Bruxelles, 1020 Brussels, Belgium.