with excess idiopathic sideroblastic blasts in the sideroblasts ringed factor that sideroblastic that sideroblasts ringed also mentioned is syndrome possible. As have sideroblasts 20-30% marrow which laid down unlike that for acquired We showed skin with the epidermis using four monoclonal antibodies to transferrin receptors studied with the aid of the immunoperoxidase technique.

Using cryostat sections of normal full-term human placenta as the control tissue for normal human skin, we have carried out experiments which fulfilled the necessary criteria for the demonstration of transferrin receptors.2 These are: (a) direct immunofluorescence with the use of tetramethyl rhodamine isothiocyanate conjugated goat anti-human transferrin,3 (b) indirect immunofluorescence, as above, following preincubation with 50 μl of 2.5 mg/ml transferrin in phosphate-buffered saline (PBS),4 and (c) indirect immunofluorescence by using the immunoglobulin (Ig) fraction of rabbit anti-human transferrin and fluorescein conjugated sheep antirabbit Ig.5 These reactions were consistently negative in normal skin.

The monoclonal antibody OKT9 has been well characterised as recognising transferrin receptor.2 In none of our experiments did this antibody react with cryostat sections of skin when used with fluorescein isothiocyanate conjugated goat anti-mouse IgG. However linear positivity was found uniformly on the syncytiotrophoblastic plasma membranes of chorionic villi (figure).

It is apparent that several monoclonal antibodies which recognise transferrin receptors differ in their patterns of reactivity. For example 83/25 reacts with T, B and non-T, non-B cell lines4 and OKT9 preferentially recognises acute lymphoblastic leukemia T cells.6 In addition it has been shown that L5-1 primarily reacts with erythroid precursor cells.10 It is possible that the transferrin receptor is a family of structurally related but antigenically and functionally distinct molecules much as was suspected as a result of studies of breast adenocarcinoma cells.11 This is borne out by the present observations which show that monoclonal OKT-9 antibody does not recognise basal cells in human skin, but the monoclonal antibodies to transferrin receptors used by Dr Gatter and colleagues gave a quite different result. Barring some type of unforeseen technical artefact, we interpret these results as being another manifestation of...

The distribution of transferrin receptor on human placenta. The syncytiotrophoblast of chorionic villi is positive with monoclonal antibody OKT-9. Note negativity of chorionic stroma (S). × 300.

The polymorphism of human transferrin receptors. At present it would seem prudent to use a battery of techniques to confirm or refute the presence of transferrin receptors rather than using only monoclonal antibodies to the receptor.

MICHAEL WELLS*
CHANG-JING G YEH
BEA-LI HSI
W PAGE FAULK
*Department of Pathology, University of Leeds, Leeds LS2 9JT
Inserm U210, Laboratoire d’Immunologie, Faculté de Médecine, Avenue de Valombreuse, 06034 Nice-Cédex, France

References

5. Faulk WP, Hsi BL, Stevens PJ. Transferrin and defective muscle anaerobic glycolysis may underlie the selective damage to type 2B muscle fibres that are more heavily dependent upon glycolysis for energy production. The prototype disorder of defective skeletal muscle anaerobic metabolism is myophosphorylase deficiency (glycogenosis type V, McArdle’s disease), although phosphofructokinase deficiency (glycogenosis type VII, Tarui’s disease), phosphoglycerate mutase deficiency (DiMauro’s disease), muscle lactate dehydrogenase deficiency (Kanno’s disease) and muscle phosphoglycerate kinase deficiency (Dalakas’ disease) have similar symptomatology. These disorders are all characterised by painful, exercise-induced, electrically-silent muscle contractions followed by post-exercise rhabdomyolysis. The usual diagnostic clinical test, the forearm ischaemic exercise test, is based upon the finding in these disorders of deficient lactate production during ischaemic exercise. Radionuclide scanning with calcium tracers demonstrates marked uptake in contracted muscle. Similar symptomatology including exercise-induced, painful muscle cramping, episodes of rhabdomyolysis, excessive muscle uptake of radionuclide calcium tracers, and the defective lactate production during ischaemic exercise has been reported in chronic alcoholics. In our histological studies of patients with myophosphorylase deficiency or phosphofructokinase deficiency, we found selective damage to the type 2B muscle fibres.

We have developed an animal (rat) model for disorders with defective skeletal muscle glycolytic/glycogenolytic metabolism. This model utilizes iodoacetate selectively to inhibit the second stage glycolytic enzyme D-glyceraldehyde-3-phosphate dehydrogenase. The animal develops muscle symptomatology completely analogous to that of human patients, including the histological evidence of selective type 2B muscle fibre injury. We have also found a sexually dimorphic response in this model with male rats and ovariectomised female rats developing markedly more severe symptomatology than intact female rats. We have performed preliminary studies of the effect of ethanol in the animal model. For six to ten weeks a complete liquid diet (Ensure) to which was added 9-5% ethanol by volume was administered as the only nutrient to a group of Wistar Furth rats. Although these rats show no evidence of alcohol dependence, they develop persistent behavioural deficits. After administration of less than half the usual

Dr Gatter replies as follows:

Dr Wells and colleagues report the interesting observation that a different monoclonal anti-transferrin receptor antibody to the four that we used in our study does not give staining of the basal layer of the epidermis in their laboratory. We too pointed out that there were differences between our antibodies, particularly between BK19-9 and the other three antibodies. The latter half of our discussion was concerned with the possible explanation for this and we raised the possibility that these discrepancies might reflect the fact that the transferrin receptor is not a single molecular entity but a family of molecules which are antigenically similar but not identical. Further studies, using a variety of different techniques, on the human transferrin receptor will be of great interest.

KC GATTER
Nuffield Department of Pathology, John Radcliffe Hospital, Oxford OX3 9DU

Selective damage to type 2B muscle fibres in ethanol-fed rats

The recent report by Slavin et al describes selective atrophy of the alkaline myofibrillar ATPase type 2B muscle fibres in chronic alcoholics. Slavin et al suggest that