Technical method

Results of 1000 urine specimens screened by bioluminescence using two preincubation techniques

<table>
<thead>
<tr>
<th></th>
<th>37°C for 20 min</th>
<th>Room temp for 45 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioluminescence-negative</td>
<td>608 (60.8%)</td>
<td>627 (62.7%)</td>
</tr>
<tr>
<td>Bioluminescence-positive</td>
<td>392 (39.2%)</td>
<td>373 (37.3%)</td>
</tr>
</tbody>
</table>

We would like to thank Dr DM Jones and Mr P Davis for advice and encouragement, Mrs B Jinks who typed the manuscript and our colleagues who ran the screening system on a routine basis.

References


Requests for reprints: Mr PW McWalter, Chief Medical Laboratory Scientific Officer, Withington Hospital, West Didsbury, Manchester M20 8LR, England.

Letters to the Editor

Hypothermia and pancreatitis

Dr Foulis' recent study relating hypothermia with the morphology of the associated acute pancreatitis is of great interest. This work, together with Dr Foulis' previous comprehensive survey relating the histological pattern of pancreatitis with various clinical diagnoses may shed some light on the pathogenesis of pancreatitis.

We would like to report certain findings of our own and consider their relevance to Dr Foulis' studies.

We have shown that at temperatures below 37°C the inhibitory action of prostacyclin (PGI₂) on in vitro platelet aggregation is diminished. Furthermore, the in vitro synthesis of PGI₂ by vascular endothelium is decreased at low temperatures. We have also suggested that at low temperatures the vasodilatory action of PGI₂ is diminished. The raised serum non-esterified fatty acid (NEFA) concentrations reported in hypothermic patients may be of relevance since we have shown that high NEFA concentrations inhibit vascular PGI₂ synthesis and accelerate PGI₂ decay in albumin solutions.

Hypothermia may thus impair synthesis, increase the rate of decay and diminish the potency of PGI₂. These changes would result in platelet activation and predisposition to thrombosis and ischaemia. A normal platelet behaviour has been demonstrated in an animal study where thrombocytopenia occurred during induced hypothermia. An increased incidence of thrombotic phenomena in patients with hypothermia is evident from Dr Foulis' own observations and from the literature he cites.

Ischaemic damage to the pancreas may occur in hypothermic patients as a result of platelet activation (as discussed above) or of "microcirculatory shock" as suggested by Dr Foulis. Such damage to the pancreas may cause the release of various enzymes. Amongst these, elastase, is thought to play a role in the destruction of vessel walls in patients with pancreatitis. Damage to vascular endothelium would further impair PGI₂ synthesis and expose deeper layers of vessels which may initiate platelet aggregation due to their collagen content. The release of trypsin is thought to activate the coagulation cascade, enhancing the ten-
dency towards thrombosis. The uncontrolled release of pancreatic lipase and fat necrosis in acute pancreatitis may lead to a further increase in serum NEFA concentration. The low serum albumin concentrations occurring in acute pancreatitis would accelerate the rate of decay of PGL, especially in the presence of raised serum NEFA concentrations.

These factors would further enhance platelet hyperaggregability. More extensive ischaemic pancreatic damage may then occur leading to further release of pancreatic enzymes, thus setting up a vicious circle.

The mechanisms we suggest are consistent with Dr Fouls' conclusion that hypothermia may lead to pancreatic damage with an ischaemic pattern.

DP MIKHAILIDIS
RA HUTTON*
JY JEREMY
P DANDONA

The Metabolic Unit,
Department of Clinical Pathology
and *Haemophilia Centre,
Department of Haematology,
Royal Free Hospital,
Pond Street, London NW3 2QG

References

Gilding motility of Acinetobacter anitarus

There is evidence to suggest that Acinetobacter anitarus syn A calcoaceticus can glide on the surface of solid media. This property was noted by one of us in batch 2 of NCTC 7844 strain of A anitarus. On inoculation on a MacConkey plate, the latter produced 1.5-2.0 mm diam lactose-fermenting compact colonies on the surface of the medium in 18-24 h at 37°C. The plate was then kept at room temperature for 18-24 h. This led to the development of many thin thread-like convoluted myxobacteria around the colony. The movement lasted till the wet preparations were dry and for maintenance of motility, subcultures of the strains had to be made on fresh medium at an interval of 3-4 days. This technique as compared to others is simple and can be carried out as a routine diagnostic procedure. Observation of gilding motility in A anitarus suggests that it could be a myxobacterium as pointed out by Lautrop.

S MUKHERJEE
N BHOPAL
Jaslok Hospital and Research Centre,
15, Dr F Deshmukh Marg,
Bombay-400 026, India

References