We would like to thank Dr DM Jones and Mr P Davis for advice and encouragement, Mrs B Jinks who typed the manuscript and our colleagues who ran the screening system on a routine basis.

References


Requests for reprints: Mr PW McWalter, Chief Medical Laboratory Scientific Officer, Withington Hospital, West Didsbury, Manchester M20 8LR, England.

Letters to the Editor

Hypothermia and pancreatitis

Dr Foulis’ recent study relating hypothermia with the morphology of the associated acute pancreatitis is of great interest. This work, together with Dr Foulis’ previous comprehensive survey relating the histological pattern of pancreatitis with various clinical diagnoses may shed some light on the pathogenesis of pancreatitis.

We would like to report certain findings of our own and consider their relevance to Dr Foulis’ studies.

We have shown that at temperatures below 37°C the inhibitory action of prostacyclin (PGI2) on in vitro platelet aggregation is diminished. Furthermore, the in vitro synthesis of PGI2 by vascular endothelium is decreased at low temperatures. We have also suggested that at low temperatures the vasodilatory action of PGI2 is diminished. The raised serum non-esterified fatty acid (NEFA) concentrations reported in hypothermic patients may be of relevance since we have shown that high NEFA concentrations inhibit vascular PGI2 synthesis and accelerate PGI2 decay in albumin solutions.

Hypothermia may thus impair synthesis, increase the rate of decay and diminish the potency of PGI2. These changes would result in platelet activation and predisposition to thrombosis and ischaemia. Abnormal platelet behaviour has been demonstrated in an animal study where thrombocytopenia occurred during induced hypothermia. An increased incidence of thrombotic phenomena in patients with hypothermia is evident from Dr Foulis’ own observations and from the literature he cites.

Ischaemic damage to the pancreas may occur in hypothermic patients as a result of platelet activation (as discussed above) or of “microcirculatory shock” as suggested by Dr Foulis. Such damage to the pancreas may cause the release of various enzymes. Amongst these, elastase, is thought to play a role in the destruction of vessel walls in patients with pancreatitis. Damage to vascular endothelium would further impair PGI2 synthesis and expose deeper layers of vessels which may initiate platelet aggregation due to their collagen content. The release of trypsin is thought to activate the coagulation cascade, enhancing the ten-
Gliding motility of Acinetobacter anitratus

There is evidence to suggest that Acinetobacter anitratus syn A calcoaceticus can glide on the surface of solid media. This property was noted by one of us in batch 2 of NCTC 7844 strain of A anitratus. On inoculation on a MacConkey plate, the latter produced 1.5-2 mm diam lactose-fermenting compact colonies on the surface of the medium in 18-24 h at 37°C. The plate was then kept at room temperature for 18-24 h. This led to the development of many thin-lead-like convexly arched offshoots around the periphery of the compact colonies. Hanging-drop preparations of the offshoots showed many rod-like forms attaching by one end to the undersurface of coverslip and performing fast pendular type flexion and extension movement by the distal freely hanging end. This type of movement had been reported by Baur in myxococci and was responsible for the development of the convexly arched offshoots. This movement gradually became sluggish till it was lost in 7-10 days in the culture maintained on nutrient agar slopes at room temperature. It was not seen however, in the next two batches of the NCTC strain and in local isolates of A anitratus. However gliding motility could be induced in batch 4 of the NCTC strain and in 10 local isolates of A anitratus on peptone-deficient (0·1% Bactopeptide) agar (1·5 % Bacto agar) slopes kept moist by covering the surface with a thin layer of phosphate buffer of pH 7·2-7·4 ± 0·2. The buffer not only kept the surface of the medium moist but also provided the ideal pH for the development of gliding motility in 18-24 h. A loopful of the growth occurring during this time was taken in the buffer and put between coverslip and slide and seen under the low and high power of a microscope for evidence of gliding motility. Microscopic examinations showed a large number of cobble-collared forms following each other gliding and fro sloom slowly over the surface of the slide in the direction of their longitudinal axis towards the periphery of coverslip where air was present. The cells changed their direction occasionally on encountering non-mobile cells and sometimes retraced their path. The cells did not flex for a twitch but occasional filamentous forms present in the group showed slow flexion and extension movement at one end. Occasional isolated cobble-collared forms used to dart away at a great speed towards one direction; none of the cells showed presence of flagella on staining. The movement lasted till the wet preparations were dry and for maintenance of motility, sub-cultures of the strains had to be made on fresh medium at an interval of 3-4 days. This technique as compared to others is simple and can be carried out as a routine diagnostic procedure. The observation of gliding motility in A anitratus suggests that it could be a mycobacterium as pointed out by Lautrop.

References

1. M. Mikhailidis, D. Mikhailidis, R. A. Hutton, P. Dandona. The Metabolic Unit, Department of Clinical Pathology and *Haemophilia Centre, Department of Haematology, Royal Free Hospital, Pond Street, London NW3 2QG


15. References


