growth of a number of aerobic organisms. We have found that addition of neomycin to the medium (neomycin-bicocazymycin blood agar, "NBBA") increases its selectivity and inhibits growth of most aerobic species, including many strains of Pseudomonas aeruginosa. Initially the final concentration of neomycin was 70 mg/l but we have found that this concentration in the medium makes NBBA inhibitory for occasional strains of anaerobic cocci and would suggest a lower concentration of neomycin (30-40 mg/l) to avoid this problem. At present, we are evaluating the use of this medium in the diagnostic laboratory and preliminary results are encouraging. We are also developing a nalidixic acid-bicocazymycin blood agar as an alternative selective medium for the isolation of anaerobic cocci from clinical examples. Bicocazymycin, used alone or in combination with agents such as neomycin allows good selective recovery of anaerobic cocci from mixed anaerobic cultures or from clinical material.

We thank Ciba-Geigy PLC for financial support.

B WATT
FV BROWN
Bacteriology Laboratory, City Hospital, Greenbank Drive, Edinburgh EH10 5SB

References

Leukaemia/lymphoma cells in cerebrospinal fluid

The paper by Pearson et al in the December 1982 issue1 is of interest in showing a further means of demonstrating tumour markers in cells harvested from the cerebrospinal fluid. Previously, Bradstock et al2 have demonstrated leukaemic cells in CSF using an anti-TdT antibody by indirect immunofluorescence. We have also recently been able to confirm the B cell nature of a 'histiocytic' transformation occurring in the CSF in a case of MA B-CLL by the negative reaction with OKT3, 11, 4 and 8 combined with a positive reaction with OKIA and the presence of both IgM and λ chains (shown by an indirect immunoperoxidase technique). We would like to suggest that while these methods are of importance in the positive diagnosis of malignant cells, they may also be put to valuable use in the exclusion of malignancy as the cause of symptomatology. We report one such case.

A farmer's ten-year-old daughter was diagnosed as having CALLA positive lymphoblastic leukaemia and was entered in the UKALL VI trial and received two years maintenance chemotherapy after remission induction. Cerebrospinal fluid was normal at diagnosis, during the CNS prophylaxis and at the completion of the therapy. Eleven months after stopping chemotherapy, she presented with acute symptoms suggestive of meningeal leukaemic relapse. Lumbar puncture showed her CSF to contain 175 leucocytes per microlitre, the vast majority of these being lymphocytes of atypical basophilic appearance, although not frankly lymphoblastic. Cytosin preparations of CSF were negative for CALLA3 and also TdT by indirect immunofluorescence. Appropriate positive and negative controls were included.

We feel this case shows the value of identifying the tumour markers at diagnosis, so that they may be used to identify or exclude the presence of malignant cells when appearing under suspicious circumstances at a later stage of the patient's illness. The value of using cytopsin preparations is clear as the yield of cells from the patient's CSF would have been insufficient for live cell staining techniques. Although the patient received methotrexate at the time of the demonstration of the raised leucocyte count in her CSF, it is inconceivable that one injection of intrathecal methotrexate would control meningeal leukaemia for a period in excess of six months. We therefore conclude that the inability to demonstrate tumour cell markers in this case was a clear indication that the cells in the CSF were non-malignant and that the technique of examining cytocentrifuge CSF cell preparations using monoclonal antibodies is a viable addition to our investigative procedures.

HELEN MAGENNIS
GERALDINE MARKAY
HD ALEXANDER
TCM MORRIS
Department of Haematology, Belfast City Hospital, Lisburn Road, Belfast BT9 7AD, Northern Ireland

The Howie report and the Howie code

There is a regrettable confusion in the minds of many people between the Report of the Working Party to Formulate a Code of Practice for the Prevention of Infection in Clinical Laboratories (the "Howie Report") and the Code of Practice for the Prevention of Infection in Clinical Laboratories and Post-mortem Rooms (the "Howie Code").

The Report, which included the Code of Practice, was submitted to the Chief Scientific Officer of the Department of Health and Social Security in January 1978. Although an early draft had been "leaked" and was published in a trades union journal the Report has not been published by the Department. The reasons for this were never made clear to members of the Working Party which produced it, nor to the newspapers which supported publication. It may be relevant here to note that one of the five recommendations made in the Report (testing of equipment by the PHLS) has been implemented. For details see Howie and Collins.1

The Code of Practice was published however, late in 1978, after the Birmingham smallpox incident but was not received in clinical laboratories until 1979. Unfortunately it contained several errors which would have been corrected had the proofs been read by members of the Working Party.

We ask, therefore, that Editors, authors, laboratory workers and officials do not use the words "Howie Report" when they refer to the ("Howie") Code of Practice.

JW HOWIE
CH COLLINS
34 Redford Avenue, Edinburgh EH12 0BB
†The Ashes, Hadlow, Kent TN11 0AT

Reference