Chronic lymphocytic leukaemia terminating in acute myelofibrosis

ANNE L LENNARD, SJ PROCTOR

From the Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP

SUMMARY Acute myelofibrosis developed in a patient with longstanding chronic lymphocytic leukaemia who had been treated with alkylating agents and total body irradiation. The case is discussed in the context of acute non-lymphoid leukaemias occurring in chronic lymphocytic leukaemia with special reference to megakaryoblastic variants.

Acute myelofibrosis was first described by Lewis and Szur in 1963. It is a rare condition characterised by pancytopenia and diffuse marrow fibrosis, but the splenomegaly associated with classic myelofibrosis is lacking. Peripheral red blood cell morphology is unremarkable. Small numbers of circulating immature white cells are seen, and giant platelets or megakaryocytic fragments are common. The marrow is difficult or impossible to aspirate and the trephine biopsy is characteristically fibrotic with prominent numbers of normal or abnormal megakaryocytes. This presentation has been shown to occur in the acute myeloid and acute megakaryoblastic types of leukaemia.

Chronic lymphocytic leukaemia terminating in acute leukaemia has been reported previously in 34 patients, but none has presented with the syndrome of acute myelofibrosis. We describe a patient who developed acute myelofibrosis more than six years after the diagnosis of chronic lymphocytic leukaemia.

Case report

A 42 year old woman presented in August 1975 with weight loss, shortness of breath, increasing abdominal girth, and pain in the left flank. Examination showed peripheral lymphadenopathy, moderate hepatosplenomegaly and an epigastric mass of lymph nodes.

The haemoglobin concentration was 10.4 g/dl, the leucocyte count 26 x 10^9/l with 85% small lymphocytes, and the platelet count was normal. Chronic lymphocytic leukaemia was diagnosed and treatment with chlorambucil and prednisone in conventional doses was started. The patient's condition showed no improvement and treatment was changed to cyclophosphamide, vincristine, and prednisone, again without effect. Sixteen months after presentation she was given total body irradiation, 120 rads in eight fractions over 30 days. Radiotherapy was discontinued because of thrombocytopenia—platelet count 90 x 10^9/l.

After recovery of the platelet count the patient remained well with no evidence of disease for 4 years, when abdominal pain recurred. Ultrasound examination confirmed intra-abdominal nodes and right ascites. After paracentesis, radiotherapy to the anterior and posterior abdomen at a dose of 750 rads in 15 fractions over nine days was administered, plus a single exposure of 15 rads to the whole body.

Six weeks later she was admitted with generalised lymphadenopathy, hepatosplenomegaly, and bilateral pleural effusions. Haemoglobin concentration was 8.3 g/dl, leucocyte count 2.2 x 10^9/l (neutrophils 76%, lymphocytes 16%, monocytes 7%, eosinophils 1%), platelet count 70 x 10^9/l. Marrow aspirate was hypercellular with an increased number of megakaryocytes and an abnormal infiltrate of lymphoid cells. Trephine biopsy confirmed these findings.

Treatment on this occasion consisted of pleural aspirations, blood transfusion, chlorambucil, vincristine, and prednisone. After five courses of chemotherapy, there was no evidence of disease on clinical examination. Chemotherapy was discontinued in October 1981 because of pancytopenia. Since diagnosis she had received 1240 mg of chlorambucil and 1800 mg of cyclophosphamide.

In December 1981 her haemoglobin concentration was 6.7 g/dl, leucocyte count 1.8 x 10^9/l, and platelet count 7 x 10^9/l. Blood film showed nucleated red blood cells 15/100 white cells, myelocytes, occasional blast cells, giant platelets, and

Accepted for publication 26 January 1984
Chronic lymphocytic leukaemia terminating in acute myelofibrosis

(a) Megakaryocytic fragments present in the peripheral blood. × 100.
(b) 2–3% blasts were seen in the peripheral blood. Insufficient numbers were obtained for accurate typing. × 100.
(c) Megathrombocytes with atypical vacuolation were present in the peripheral blood. Morphologically normal platelets were absent. × 100.
(d) Trephine biopsy from right iliac crest showed gross increase in reticulin. Megakaryocytic trapping was evident. × 25.
was given. The white blood cell chloracetate esterase infiltration by large spleen showed myeloid metaplasia though blast cells (740 g); node, but initial diagnosis. Infiltrate in infiltrating cells similar cytoplasmic pyroninophilia. Contain cytoplasmic Acute and describe the ness megakaryoblastic although recently hepatosplenomegaly, fibrosis of the published following Discussion. have leukaemias ally rapidly terminating '2 

Discussion

Acute myelofibrosis is only one term used to describe the syndrome of pancytopenia, absence of hepatosplenomegaly, fibrosis of the marrow, and a variable number of peripheral blood blast cells. Other authors have used the terms acute myelosclerosis,1 malignant myelosclerosis,2 acute megakaryoblastic leukaemia,3 and acute megakaryocytic myelofibrosis.4 This disorder is usually rapidly fatal with a mean survival of six months, although recently more optimistic reports have been published following the use of aggressive chemotherapy5 6 or bone marrow transplantation.7 8

Thirty four cases of chronic lymphocytic leukaemia terminating in acute leukaemia have been reported. Most of the acute non-lymphocytic leukaemias have occurred in patients treated with radioactive phosphorous, chemotherapy, or chemotherapy with radiotherapy. One case occurred in a patient treated only with total body irradiation,9 and one occurred in a previously untreated patient.10 Treatment in our patient included chlorambucil, cyclophosphamide, total body irradiation, and regional radiotherapy. All these treatments have been implicated as causes of secondary leukaemia.11 12 Bain et al.13 and Den Ottolander et al.14 have postulated that in most cases acute myelofibrosis might be synonymous with acute megakaryoblastic leukaemia. Other workers15 16 have positively identified the blast cells in cases of acute myelofibrosis as myeloblasts, based on the presence of Auer rods or characteristic cytochemical reactions.

Absolute diagnosis is often difficult because of the small numbers of circulating blast cells and absence of marrow aspirate material for cytochemical staining or cell surface marker studies. Our patient never had more than 1-8 × 10^9/l circulating white cells with 2–3% blast cells, and attempts at definitive cell typing were unsuccessful.

Nevertheless, clinical findings, peripheral blood film, and trephine biopsy confirmed the diagnosis of acute myelofibrosis, and we believe this to be the first reported case of this syndrome arising in a patient with chronic lymphocytic leukaemia.

References

11 Breton-Gorius J, Bizet M, Reyes F, et al. Myelofibrosis and acute megakaryoblastic leukaemia in a child: topographic relation-
Chronic lymphocytic leukaemia terminating in acute myelofibrosis


The April 1984 issue

THE APRIL 1984 ISSUE CONTAINS THE FOLLOWING PAPERS

Basement membrane and apocrine epithelial antigens in differential diagnosis between tubular carcinoma and sclerosing adenosis of the breast. F EKBLOM, M MIETTINEN, LISBETH FORSMA, LC ANDERSSON

Immunocytochemistry in the identification of vascular invasion in breast cancer. R BETTELHEIM, D MITCHELL, BA GUSTEASON

Use of NK1 C3 monoclonal antibody in the assessment of benign and malignant melanocytic lesions. RONA M MACKIE, IRENE CAMPBELL, MARLYN L TURBTT

Small intestinal mucosal fat in childhood enteropathies. S VARIEND, MONICA PLACZEK, F RAAFAT, JA WALKER-SMITH

Argyrophil cells in normal, hyperplastic, and neoplastic endometrium. E SIVRIDIS, CH BUCKLEY, H FOX

Pituitary adenomas producing growth hormone in acromegalic patients. LESLEY A SMALLMAN, PJS DUNN, RC CURRAN, DR LONDON

Pulmonary infiltrates in immunocompromised patients: diagnosis by cytological examination of bronchoalveolar lavage fluid. JENNIFER A YOUNG, JM HOPKIN, WP CUTHBERTSON

When is it an osteoclast? M KAYE

Removal of formaldehyde and xylene fumes from histopathology laboratories: a functional approach to the design of extraction systems. FP EDWARDS, AR CAMPBELL

An external quality assessment scheme in histopathology. ANTHEA J SHERWOOD, AC HUNT


Pseudomonas in the sinks in an intensive care unit: relation to patients. MH LEVIN, B OLSON, CATHERINE NATHAN, SA KABINS, RA WEINSTEIN

Inhibitory effect of cerebrospinal fluid on the growth of meningococci and pneumococci. M HASSAN-KING, HC WHITTLE, BM GREENWOOD

Heterotypic reactions in a radioimmunoassay for coxsackie B virus specific IgM. SF PUGH

An immunoperoxidase assay for the detection of specific IgA antibody in Epstein-Barr virus infections. R CEVENINI, M DONATI, F RUMPIANISI, A MORONI, P PAOULUCI

Vitamin D nutrition in pregnant women at term and in newly born babies in Saudi Arabia. F SERENIUS, ATH ELIDRISSEY, F DANDONA

Investigation of the organelle pathology of skeletal muscle in chronic alcoholism. FC MARTIN, G SIEVIN, AJ LEVI, TJ PETERS

Observed activities of serum creatine kinase: total and B subunit activity and other enzymes in young persons abusing solvents. RJ SPONNER, RC BIRRELL, AS MCLELLAND, JA BAIRD, I SOURINDHRIN

Increased serum IgE concentrations during infection and graft versus host disease after bone marrow transplantation. SA WALKER, TR ROGERS, D PERRY, JR HOBBS, PAMELA G RICHES

Serum paraproteins in chronic lymphocytic leukaemia. D SINCLAIR, JH DAGG, AM MOWAT, DELPHINE MV PARROT, DI STOTT

Endotoxaemia as a cause of fever in immunosuppressed patients. RI HARRIS, PCW STONE, GR EVANS, J STUART

Acquired immunodeficiency syndrome in a patient with no known risk factors: a pathological study. AD BURT, GRACE SCOTT, CAROLINE R SHIACH, CG ISLIES

Technical method

Selection and use of a method for the culture of blood leucocytes to reveal the fra(x) site. JS HASLAM, RG CHITHAM, JW TAYLOR, V ANNESS

Letters to the Editor

Book reviews

Some new titles

Notices

Correction

Requests for reprints to: Dr AL Lennard, Department of Haematology, The Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, England.