Laboratory diagnosis of cryptosporidiosis

DP CASEMORE,* M ARMSTRONG,* RL SANDS†

From the *Public Health Laboratory, Glan Clwyd Hospital, Rhyl, Clwyd, Wales, and the †School of Pharmacy, Liverpool Polytechnic, Liverpool

SUMMARY Cryptosporidium spp is now widely accepted as a cause of gastroenteritis. Various methods have been applied to detect oocysts in faeces, but the difficulties of discriminating between non-cryptosporidial bodies, acid fast bodies like cryptosporidia, and cryptosporidia remain. A simple examination in two stages, suitable for routine use is described, using auramine phenol and carbol fuchsin for screening and a modified Ziehl-Neelsen staining method for confirmation. A further method, using Jenner and Giemsa stains, is of value for confirmation of identity, especially where fluorescent microscopy is unavailable. A modification of the formol-ether method of concentration is also described. Immunofluorescence and thin section electron microscopy provide definitive identification. Vomiting can be an important clinical feature of gastroenteritis, and the first description of oocysts in vomit is reported. Preliminary findings, after more than two years of study show that Cryptosporidium is an important pathogenic agent in gastroenteritis, confirm the increased incidence in children, and suggest a possible seasonal trend.

The coccidian protozoan parasite Cryptosporidium sp is now widely accepted as a cause of acute gastroenteritis. In some normal subjects the symptoms may be both severe and persistent, while in immunocompromised patients the infection may be life threatening. Various methods have been recommended for studying cryptosporidia using light and transmission electron microscopy. These vary from the examination of wet films to negative staining by transmission electron microscopy. Since beginning our study early in 1983 we have supplied many laboratories with positive material and guidance, and in this paper we make recommendations for the routine diagnostic examination of faecal samples. A comparison of the methods studied has shown that the fluorescence stain described, together with modified formol-ether concentrations when appropriate, are significantly more sensitive than other methods (p < 0.001).

Material and methods

WET FILM: DIRECT EXAMINATION OF FAecal MATERIAL

Jokipii et al. and Ma and Soave recommended preliminary screening by the use of wet preparations. We found this method to be insensitive and not particularly helpful, although it may be helpful for detecting cysts or ova of other parasitic species that may also be present.

Accepted for publication 22 May 1985

STAINING

The use of Romanowsky stain to show endogenous stages in gut mucosa smears was first described by Tyzzer. This was extended to the detection of oocysts in smears of cattle faeces by Pohlenz et al. and in man by Tzipori et al. The method is relatively insensitive but still retains a useful role as an additional technique in cases of doubtful morphology. We prefer a combination of Jenner and Giemsa stains, which we use in an automatic slide staining apparatus (Shandon). Smears are placed in racks in the following reagents for five minutes for each stage: methanol 64 over proof × 2; Jenner stain (BDH: diluted 1:6 in Sorensen’s buffer pH 6-8) × 2; Giemsa stain (BDH: diluted 1:10 in Sorensen’s buffer) × 2; Sorensen’s buffer pH 6-8.

Cryptosporidium oocysts stain blue to azure, often with a crescentic pattern; about four to six red or purple dots may be seen, and there may be a clear halo surrounding the oocyst resulting from shrinkage.

ZIEHL-NEELSEN METHOD

A modified cold Ziehl-Neelsen method was first described by Henriksen and Pohlenz. Further modifications have now been described. The method is widely used, and we recommend the following procedure. Moderately thick faecal smears dried in air placed in multislide carriers for fixation and staining in batches of up to 16 slides in troughs as
Fluorescence staining
This has been reported by several workers. Most diagnostic microbiological laboratories have access to fluorescence microscopy, and the following novel modification first described by Casmore et al. combines auramine phenol staining as previously described, with negative staining by strong carbol fuchsine as described by Heine in a simple two step procedure suitable for rapid screening of large numbers of samples.

AURAMINE AND CARBOL FUCHSINE
1 Thick faecal smears dried in air were placed in multislide carriers into a trough of auramine-phenol, stained for five minutes, then rinsed in tap water.
2 The smears were immersed briefly (five to 10 seconds) in strong carbol fuchsine, rinsed, and dried.

Total handling time for staining 16 slides was two to three minutes. Slides were examined using fluorescence microscopy at low magnification. Cryptosporidia appear as very characteristic brightly fluorescent discs against a dark red background. Positive specimens may be re-examined at high power by immersion in oil or in doubtful cases the object may be located by vernier reading and the slide re-examined after overstaining by the modified Ziehl-Neelsen technique. Doubtful scanty positive results may be checked after concentration of the specimen.

Concentration methods
Faeces received from acutely ill patients usually contain sufficient numbers of cysts, obviating the necessity for concentration methods. However, the examination of specimens from close family contacts, cases in which diagnosis has been delayed, and follow up specimens from patients who have recovered merits the use of such techniques. A widely reported method is that of sucrose flotation as described by Sheather in 1923: this method has several drawbacks, including interference with staining properties and adhesion of samples to the slide. We prefer a modification of the method of Allen and Ridley. Some workers have failed to obtain satisfactory results with the formol-ether method, which may have resulted from a failure to realise that the characteristics of cryptosporidial oocysts differ from those of the parasite forms for which the method was originally devised. We would advocate the following new modification:
1 Fluid specimen of faeces, 0.5 ml, (or equivalent of solid stool) is emulsified in about 3 ml of 10% formalin in water in a glass universal container using a vortex mixer (with initial breaking up with an applicator stick if necessary). Add 3 ml ether and shake vigorously for 30–40 seconds.
2 Make up to about 15 ml with 10% formalin, remix, and pour through a 40 mesh gauze sieve (Endecotts Ltd, London: certified test sieve 3 inches, ASTM, 425 μm) into a glass conical centrifuge tube.
3 Centrifuge by setting the regulator to 1000 rpm (450 RCF) and spin for half to one minute at this speed. Using a plastic disposable bulb pipette, carefully pass this down the side of the ether or debris layer and remove the column fluid to a second tube.
Top up with formol water. (The deposit may be used to prepare wet films for examination for other ova and cysts if required.)
4 Centrifuge at 3000 rpm (1000 RCF) for five to 10 minutes depending on the viscosity of the specimen. The deposit is used to make a smear stained in the usual way.

Electron microscopy
The appearance of oocysts after negative staining of faecal material for the detection of viruses is quite characteristic, although the insensitivity of the method in terms of sample size makes the technique inappropriate for routine use, even where electron microscopy facilities are available. Thin sections of possible oocysts in faeces may be useful in providing definitive identification (Fig. 1).

Results

Fig. 2 shows a comparison of concentration methods: the modified formol ether method is the most sensitive. A comparison of the same methods, but staining by two different procedures (Ziehl-Neelsen and auramine and carbol fuchsine) showed...
Laboratory diagnosis of cryptosporidiosis

Fig. 1 Fresh faeces were suspended in agarose, fixed, and sectioned using a diamond knife. Oocyst contains four partially developed sporozoites and residual cytoplasmic mass. ×40 000.

Fig. 2 Standardised smears prepared from concentrates. Statistical analysis was carried out (Dec 20 computer) using χ² test with the null hypothesis and Yates's correction where appropriate. Results showed a significantly better performance by the modified ether method described (p < 0.001). Sodium chloride gave the best results for flotation methods.

a significantly better result with the auramine or carbol fuchsin stain (Fig. 3). Results may vary according to the consistency of the stool, a finding also supported by P Ma (personal communication).

Fig. 3 Same specimens were subjected to identical tests, but duplicate smears were prepared and stained by modified Ziehl-Neelsen method; and auramine/carbol fuchsin. Results showed that the auramine/carbol fuchsin method performed significantly better than the Ziehl-Neelsen method (p < 0.001).

During two years of study over 3000 specimens were examined from a diverse population of patients, yielding more than 60 positive cases. Examination covered the most commonly recognised pathogens. Tables 1 and 2 show the results of investigations covering the first 50 positive cases. Overall, reports show that Cryptosporidium is found
Table 1 First 50 cases of infection with cryptosporidium obtained (March 1983 to June 1984)

<table>
<thead>
<tr>
<th>Date</th>
<th>No of cases</th>
<th>No positive Age and Sex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td></td>
<td>M 0 F 9/12</td>
</tr>
<tr>
<td>July</td>
<td></td>
<td>M 1, 5, 12</td>
</tr>
<tr>
<td>August</td>
<td></td>
<td>F 8, 8</td>
</tr>
<tr>
<td>September</td>
<td></td>
<td>M 1 2, 9, 26</td>
</tr>
<tr>
<td>October</td>
<td></td>
<td>F 1, 30, 44</td>
</tr>
<tr>
<td>November</td>
<td></td>
<td>M 1/2, 15, 35</td>
</tr>
<tr>
<td>December</td>
<td></td>
<td>F 35</td>
</tr>
<tr>
<td>1984:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td></td>
<td>M 0 F 0</td>
</tr>
<tr>
<td>February</td>
<td></td>
<td>M 1, 1, 18</td>
</tr>
<tr>
<td>March</td>
<td></td>
<td>F 0</td>
</tr>
<tr>
<td>April</td>
<td></td>
<td>M 2, 4, 6, 28, 36, 37</td>
</tr>
<tr>
<td>May</td>
<td></td>
<td>F 1, 35, 89</td>
</tr>
<tr>
<td>June</td>
<td></td>
<td>M 7, 16</td>
</tr>
<tr>
<td>Totals</td>
<td>2573</td>
<td>50 28 M : 22 F</td>
</tr>
</tbody>
</table>

*All patients including those whose ages were not specified.
†All patients including those whose ages were specified.

in about 2% of all specimens examined, although among children the incidence appears to be about 4% (Table 3). In our laboratory it is the third most frequently encountered pathogen after rotavirus and Campylobacter.

Vomiting is often a predominant symptom. Cryptosporidium was found in the vomit of one patient from whom we examined specimens (a child admitted to hospital as a result of severe vomiting and diarrhoea). In addition, we found cryptosporidia in the stool of one child and one adult patient who complained of vomiting with anorexia and abdominal pain but without diarrhoea. Mixed infections were found in some cases, principally with Campylobacter and Giardia. Similar findings have been reported elsewhere.16-17

No particular seasonality has been noted, although an outbreak occurred in this area during March and April 1984 in which campylobacter was also often isolated.16 During both winters there was a low prevalence with an increase again in the spring of 1985.

Discussion

No staining method for cryptosporidia is completely effective, a view shared by P Ma (personal communication). The appearance of cryptosporidial oocysts in faeces, however, is generally sufficiently typical for there to be little difficulty in identifying the organism in most cases. On the other hand, the inexperienced may be confused by a variety of objects resembling oocysts in general appearance, whichever staining method is applied. In addition, cryptosporidia have been described that are larger than the usual size range of 3–6 μm. Trifft,18 Bearup,19 and Dubey and Pande20 described what were claimed to be cryptosporidia in snakes, dingoes, and jungle cats, respectively, which were considerably larger (7–17 μm). Although not yet reported from other species, including man, we found similar large objects like cryptosporidia in both environmental and occasionally human specimens.

Objects comparable in size to cryptosporidia may also be found, but they have different internal structures or staining features. In any doubtful case we apply immunofluorescence staining by a method to be described in detail elsewhere, together with

Table 2 League table of faecal pathogens (May 1983 to June 1984)

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>No positive (%)</th>
<th>Total No of positives expressed as %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campylobacter</td>
<td>117 (27-7)</td>
<td>4.5</td>
</tr>
<tr>
<td>Rotavirus</td>
<td>84 (19-9)</td>
<td>3.3</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>50 (11-6)</td>
<td>1.9</td>
</tr>
<tr>
<td>Salmonella</td>
<td>48 (11-4)</td>
<td>1.9</td>
</tr>
<tr>
<td>Adenovirus (electron microscopy)</td>
<td>38 (9-0)</td>
<td>1.5</td>
</tr>
<tr>
<td>Enteropathogenic Escherichia coli</td>
<td>26 (6-2)</td>
<td>1.0</td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>25 (6-0)</td>
<td>1.0</td>
</tr>
<tr>
<td>Shigella sonnei</td>
<td>15 (3-2)</td>
<td>0.6</td>
</tr>
<tr>
<td>Other bacteria</td>
<td>12 (2-8)</td>
<td></td>
</tr>
<tr>
<td>Other viruses</td>
<td>8 (1-9)</td>
<td></td>
</tr>
<tr>
<td>Total positive</td>
<td>423</td>
<td>16-4</td>
</tr>
<tr>
<td>Total examined</td>
<td>2573</td>
<td></td>
</tr>
</tbody>
</table>

Low level of positives overall reflects the inclusion of samples from non-infective diarrheas, some routine samples, and a high proportion of samples from adults.
Laboratory diagnosis of cryptosporidiosis

Fig. 4 Cryptosporidium oocysts stained by immunofluorescence using convalescent human serum and an antihuman globulin/fluorescein isothiocyanate conjugate. × 2000.

details of serological diagnosis. Briefly, the specimen is dispensed on to the wells of a microscope slide coated with teflon, air dried, and fixed in cold acetone for five minutes. A pool of high titre IgA positive convalescent human sera is then used at a predetermined titre in a sandwich technique using an antihuman fluorescein isothiocyanate conjugate against the IgA fraction (Wellcome Reagents) used at optimal dilution (Fig. 4).

Our own continuing study, together with reports from elsewhere21–23 confirm earlier observations from this laboratory24 25 that the infection is not uncommon, especially in children, and should not be assumed to be a zoonosis as it occurs in the urban environment, especially in children in day care centres. It may also be found as a cause of travellers' diarrhoea.26 In addition to probable person to person spread, local studies26 28 and evidence from elsewhere29 suggest that raw milk, sausage, and environmental sources may all have a role in transmission.

We thank Dr FB Jackson, director, the staff of this laboratory and of the Moreedun Institute, Edinburgh, for help and encouragement, Mrs G String-fellow for secretarial help, and Dr A Curry, Public Health Laboratory and Department of Histopathology, Withington, for help with electron microscopy.

This work forms part of a project for a higher degree (DPC) and FMLS project (MA) at the Liverpool Polytechnic School of Pharmacy.

References

14 Stander AL. The detection of intestinal protozoa and mange parasites by a flotation technique. Journal of Comparative Pathology and Therapeutics 1923;36:266–75.

Requests for reprints to: Dr DP Casemore, Public Health Laboratory, Ysbyty Glan Clwyd, Bodelwyddan, Rhyl, Clwyd, Wales LL18 5UJ.