Metastatic thymoma: a case report and immunohistological analysis

DM SALTER, AS KRAJEWSKI

From the Department of Pathology, University of Edinburgh, University Medical School, Edinburgh

SUMMARY A patient with metastatic lymphocyte predominant thymoma was studied and an immunohistological analysis of frozen and paraffin sections was performed. The immunophenotype of the lymphoid cells was similar to that of primary thymomas and T cell lymphoblastic lymphomas. The epithelial cells reacted with an anticytokeratin monoclonal antibody. The results have diagnostic implications for the histopathologist using immunohistochemistry as a diagnostic aid and it is concluded that a panel of monoclonal antibodies against both lymphoid and epithelial markers should be used for immunohistological typing of tumours of uncertain histogenesis.

Thymomas are neoplasms of thymic epithelial cells with a variable associated lymphocytic component,\(^1\) which is considered to be reactive or secondary to local influencing factors. Recent studies on the immunohistology of primary thymomas\(^2\)\(^-\)\(^4\) have confirmed the findings of earlier reports based on E rosetting\(^5\)—that is, the associated lymphocytes are T cells. Such studies have also shown that these lymphoid cells have a phenotype similar to that of cortical thymocytes.

Thymomas rarely metastasise,\(^1\)\(^6\) and as far as we are aware there have been no reported studies of the immunophenotype of the lymphoid cells in metastatic thymoma. We report here a case of metastatic thymoma that was analysed immunohistologically and discuss the importance of the results with respect to the known phenotype of primary thymomas and their importance to the histopathologist using immunohistochemistry as a diagnostic aid.

Case report

A 52 year old woman presented with enlarged cervical lymph nodes. Radiological examination showed a large mediastinal mass. A left cervical lymph node was resected, and part of it fixed in 4% neutral buffered formaldehyde and processed for paraffin sections; another part was snap frozen and sections cut for immunohistological studies.

Examination of the patient’s medical history showed that she had been treated seven years previously with radiotherapy for a right sided medias-
Scattered large cells with fine nuclear chromatin and a single nucleolus are admixed with diffuse infiltrate of small lymphocytes. Haematoxylin and eosin stained paraffin section. × 675.

Fig. 2 Frozen section stained with OKT6 shows strong reactivity with majority of lymphocytes. × 320.

J Fabre, Blond McIndoe Centre, East Grinstead; OKT6, OKT11, OKT3, OKT4, OKT8, and OKM1 from Ortho Diagnostics; Leu4 and Leu10 from Becton Dickinson; DA6231 from K Guy, Medical Research Council Clinical and Population Cytogenetics Unit, Western General Hospital, Edinburgh; anticytokeratin from Lab Systems; and Dako-EMA, Dako-B, and Dako-LC from Dakopatts. Immunohistochemical staining was carried out on frozen sections with each of these monoclonal antibodies. In addition, paraffin sections were stained with Dako-LC, F8-11-13, anticytokeratin, and Dako-epithelial membrane antigen, the results obtained being similar to those seen on frozen sections.

Most of the lymphoid cells reacted with the leucocyte common monoclonal antibody F10-89-4 and

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Specificity</th>
<th>Lymphocytes</th>
<th>Epithelial cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>F10-89-4</td>
<td>Leucocyte common antigen</td>
<td>+++</td>
<td>-</td>
</tr>
<tr>
<td>Dako-LC</td>
<td>Leucocyte common antigen</td>
<td>+ +</td>
<td>-</td>
</tr>
<tr>
<td>F8-11-13</td>
<td>Leucocyte common antigen</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>OKT6</td>
<td>Cortical thymocytes</td>
<td>+ +</td>
<td>-</td>
</tr>
<tr>
<td>OKT11</td>
<td>'E' receptor</td>
<td>+ + +</td>
<td>-</td>
</tr>
<tr>
<td>OKT3</td>
<td>Pan T cells</td>
<td>+ +</td>
<td>-</td>
</tr>
<tr>
<td>UCHT1</td>
<td>Pan T cells</td>
<td>+ + +</td>
<td>-</td>
</tr>
<tr>
<td>Leu4</td>
<td>Pan T cells</td>
<td>+ + +</td>
<td>-</td>
</tr>
<tr>
<td>OKT4</td>
<td>Helper T cells</td>
<td>+ + +</td>
<td>-</td>
</tr>
<tr>
<td>OKT8</td>
<td>Suppressor T cells</td>
<td>+ + +</td>
<td>-</td>
</tr>
<tr>
<td>DA6 231</td>
<td>MHC class II DP and DR</td>
<td>+</td>
<td>+ + +</td>
</tr>
<tr>
<td>Leu10</td>
<td>MHC class II DQ</td>
<td>+</td>
<td>+ + +</td>
</tr>
<tr>
<td>Dako-B*</td>
<td>Pan B cells</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OKM1</td>
<td>Macrophages</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Anti-cytokeratin</td>
<td>Cytokeratin</td>
<td>-</td>
<td>+ + +</td>
</tr>
<tr>
<td>Dako-EMA</td>
<td>"Epithelial membrane antigen"</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

MHC = Major histocompatibility complex.
- = < 5%; + = 5-30%; ++ = 30-60%; +++ = > 60% positively staining cells.
*Dako-B stained a few residual lymphoid follicles.
Metastatic thymoma: a case report and immunohistological analysis

Leu4 and UCHT1, showed strong reactivity with most lymphoid cells in a similar way to that seen with OKT6, but OKT3 reacted only with about 60% of the lymphoid cells. OKT4 and OKT8 stained most lymphoid cells. Scattered collections of lymphocytes reacted with the major histocompatibility complex class II monoclonal antibodies, Leu10 and DA6 231. Most lymphoid cells were also shown to be positive for terminal deoxynucleotidyl transferase by immunofluorescence.

Epithelial cells did not react with any of the T or B lymphoid cell markers. Leu 10 and DA 231 reacted strongly with the epithelial cells and also showed strong staining of a dendritic network (Fig. 3). This is consistent with the observation that thymomas contain S100 positive cells that appear to be interdigitating dendritic cells. Cytokeratin reacted strongly with the epithelial cells and dendritic processes arising from these cells (Fig. 4).

There was no reactivity with either the lymphoid or epithelial components of the thymoma with DakoB, OM1, or Dako EMA.

Discussion

As far as we are aware this is the first reported case of metastatic thymoma using a detailed immunohistological study. The lymphoid cells expressed a cortical thymic phenotype, most cells reacting with the monoclonal antibodies OKT6, OKT11, OKT4, and OKT8 but failing to react with F8-11-13. Most of the lymphoid cells were also shown to be positive for terminal deoxynucleotidyl transferase by immunofluorescence. This suggests that the neoplastic epithelial cells in metastatic thymoma are capable of producing a lymphopoietic environment similar to that of the normal thymus.

The immunophenotype of the lymphoid cells in this patient with metastatic thymoma and in primary thymomas is similar to that of T cell lymphoblastic lymphoma. In most cases of thymoma the epithelial component of the neoplasm is readily identifiable, as are other histological features such as rosette formation. In cases of lymphocyte predominant thymoma, however, the epithelial component may be less easily recognised and perhaps misinterpreted as the reactive histiocytic cells often seen in lymphomas. The finding that the epithelial cells of metastatic thymoma stain strongly with an anticytokeratin monoclonal antibody agrees with other reports in which the epithelial cells of primary thymomas have been shown to react with antikeratin antibodies and an anticytokeratin monoclonal antibody, CAM5.2. This has obvious diagnostic implications for the histopathologist using immunoperoxidase techniques to help classify lymphomas. By the use of a standard

Fig. 3 Frozen section stained with DA6 231 (major histocompatibility complex Class II DP and DR) shows strong reactivity with large cells and dendritic processes. × 320.

Fig. 4 Paraffin section stained with anticytokeratin shows large numbers of epithelial thymoma cells with dendritic processes. × 160.

Dako-leucocyte common, but only scattered lymphocytes reacted with F8-11-13, which recognises the high molecular weight form of the leucocyte common antigen not normally expressed by cortical thymocytes. OKT6 and OKT11 reacted strongly with most lymphoid cells (Fig. 2). The pan T cell markers,
panel of monoclonal antibodies against lymphoid markers a lymphocyte predominant thymoma would show the phenotype of a T cell lymphoblastic lymphoma with a scattered background population of major histocompatibility complex class II positive large cells. If anticytokeratin antibodies are not used the true epithelial nature of these cells may be overlooked and the thymomatous nature of the lesion missed.

As previously suggested by ourselves and other authors,14-18 to decrease the possibility of misinterpretation and erroneous diagnosis it is therefore imperative that for routine diagnosis a panel of monoclonal antibodies against both lymphoid and epithelial markers should be used for immunohistological typing of tumours of uncertain histogenesis.

We thank Ms Anita Ford, haematology department, Western General Hospital, Edinburgh, for results of terminal deoxynucleotidyl transferase immunofluorescence and Mrs Kit Gardner for typing the manuscript. This work was supported in part by a grant from the Sir Stanley and Lady Davidson Medical Research Fund of the University of Edinburgh.

References

Requests for reprints to: Dr DM Salter, Department of Pathology, University of Edinburgh, University Medical School, Teviot Place, Edinburgh EH8 9AG, Scotland.