row showed erythroblastopenia (less than 1% of erythroblasts). The presence of serum anti-HPV IgM (radioimmunoassay) suggested a recent HPV infection. Packed red cells (600 ml) were transfused. Over the next few days the symptoms disappeared and haemoglobin concentrations remained stable. Ten days after admission reticulocyte count was 150 x 10⁹/L. Eighteen months later, the patient was quite well and all haematological investigations yielded normal results blood count, haemoglobin electrophoresis, erythrocytic enzymes (glucose-6-phosphate-dehydrogenase, glucose-phospho-
geranhydrogenase, hexokinase, glucose-isomerase-phosphate, glucose-pyru-
vate, glutathione reductase, acetyl-cholin-
esterase, pyrimidine-5'-nucleotidase), osmotic resistance and autohaemolysis.

Our observation of HPV infection associated with aplastic crisis but without haemo-
molys differs from the transient erythro-
blastopenia seen in childhood, which often affects younger children (1 to 4 years) and occurs without HPV infection.

Aplastic crisis associated with HPV infection has hitherto only been described in hereditary⁴ ⁵ ⁶ or acquired⁷ haemolytic anaemias. It seems that the erythro-
blastopenic effect of HPV is constant but goes unnoticed if the red cell life span is normal. A shortened red cell survival (hae-
molys) is necessary to cause acute ana-
emia. Acute anaemia occurring without haemolysis due to an HPV infection is difficult to explain. In our patient only iso-
topic labelling of his erythrocytes could have completely excluded underlying haemolysis. Nonetheless, we wanted to record the experience to encourage doctors to ask for parvovirus serology in similar clinical cir-
cumstances.

M GUILLOT
JJ LEFRERE
N RAVENET
E LEVEQUE
R GIROT
Service de Pédiatrie—Centre	Hôpital de Lísieux
14107 Lísieux,
Laboratoire d’Hématologie—Hôpital	des Enfants Malades
75015 Paris, France.

References

3 Bhambani K, Inove S, Sarnaik SA, Merline J. Transient erythroblastopenia of childhood not associated with human parvovirus infe-

4 Lefrere JJ, Courouce AM, Girot R, Bertrand Y, Soulier JP. Six cases of hereditary spher-
cyctosis revealed by human parvovirus apla-

immune hemolytic anaemia revealed by human parvovirus linked erythroblastopeni-

Long term freeze storage of Campylobacter pyloridis

The letter by Westblom et al¹ prompted us to review our technique for storing cultures of Campylobacter pyloridis.

For the past year we have been isolating C pyloridis from gastric biopsy specimens by inoculating the tissue on to chokolate blood agar containing 3 μg/ml amphotericin B and 10 μg/ml vancomycin. Plates were incubated in an anaerobic jar containing 90% nitrogen and 10% carbon dioxide for seven days at 37°C. The identity of the organisms was confirmed by cellular and Gram mor-
phology and their ability to split urea very rapidly. Initially such cultures were harvested in to tryptone soy broth containing 15% glycerol and stored in a deep freeze at −70°C. Following Westblom et al’s letter we retrieved some of these cultures, thawed them, and inoculated them on to chokolate agar plates as described above. Three cul-
tures frozen seven and a half, seven and a half, and five and a half months previously yielded profuse growths and one frozen 10| months previously still contained viable organisms although in small numbers. More recently cultures have been stored on “beads in cryopreservative fluid”, supplied with the Protect Bacterial Preserver system (Technical Service Consultants Ltd PO Box 31, Bury BL9 5RA). A profuse growth was obtained from one of these which had been frozen three months previously.

Large numbers of strains will need to be stored for longer periods to confirm our observations, but in contrast to the experi-
ence of Westblom et al, we have not found freeze storage of C pyloridis in conventional media to be a problem.

CD RIBEIRO
SI GRAY
Public Health Laboratory—University Hospital of Wales, Heath Park, Cardiff CF4 4XW

Reference

Comparative sensitivities to antimicrobial agents of Campylobacter pyloridis and the gastric campylobacter-like organism from the ferret

Increasing evidence supports the association of Campylobacter pyloridis with antral gastritis and peptic disease, notably duodenal ulce-
rations, in man. Results of antimicrobial sensi-
tivity tests on 110 isolates of C pyloridis from Australia, the United Kingdom, and France, have shown good agreement,¹ ² ³ and limited clinical trials have shown that treatment with certain antibacterial drugs clears C pyloridis from the gastric mucosa.

The isolation of campylobacter-like organisms from the gastric mucosa of ferrets was first reported from Boston, USA³ ⁴; this organism, with morphological similarities to C pyloridis, was isolated from about half of the animals examined. Histological studies sug-
gested a possible association between the presence of the campylobacter and gastric inflammation.

In contrast, Rathbone et al⁵ isolated a campylobacter-like organism from the gas-
tric tissue of all of the 17 ferrets that they examined, but the organism was associated with neither histological inflammation nor ulceration.

We have compared the sensitivities to antimicrobial and antiulcer drugs of gastric campylobacter-like organisms (GCLO) iso-
lated from 14 ferrets with those of 11 isolates of C pyloridis. Comparative studies, including drug, enzyme, protein, and isoprenoid quinone composition, will be reported later.

Samples of gastric mucosa from the antrum, body, and fundus of 14 mature male ferrets obtained from one supplier were taken when the animals were killed after emesis provocation experiments. On macro-
scopical examination one of the 14 ferrets...
had small antral erosions, histological examination of which showed a small area of surface epithelial loss with vascular congestion and some re-epithelialisation at the lesion margin. Gastric campylobacter like organisms were especially abundant adjacent to the lesion.

All 14 ferrets showed evidence of low grade gastritis deep in the antral mucosa, which in some cases extended into the submucosa. Gastric campylobacter like organisms were seen in the gastric pits of all animals, but did not extend to the deep mucosa, where most of the pathological changes were seen.

Gastric campylobacter like organisms (GCLO), phenotypically resembling those previously reported, were readily isolated from the gastric tissues (notably the antrums) of all ferrets on blood agar containing Skirrow’s supplement. All the isolates of ferret GCLO grew microaerobically with additional CO₂ at 37°C; none grew aerobically or anaerobically.

C pylori and the ferret GCLO were similarly non-fermentative, oxidase, and catalase positive, and rapidly hydrolysed urea. Three disc tests simply differentiated the strains, however, the ferret GCLO being resistant to cephalothin (30 μg) and the vibriostatic agent, 0129 (150 μg), but sensitive to nalidixic acid (30 μg). In agreement with a previous observation (McNulty CAM, Dent JE, abstract presented at XIV International Congress of Microbiology, 1986), leucine aminopeptidase was detected in all 11 isolates of C pylori. In contrast, none of the GCLO from ferrets produced this enzyme.

Minimum inhibitory concentrations were determined by incorporating the compounds in blood agar base no 2 (Oxoid) containing 5% defibrinated horse blood and inoculating with 10⁴ colony forming units of a cell suspension harvested from the surface of three day blood agar cultures (Multipoint Inoculator, Denley Tec Limited, UK). All plates were incubated for three days at 37°C in an atmosphere of 5% O₂ and 10% CO₂.

The results show that the ferret GCLO was considerably more resistant than C pylori to certain compounds, notably the β-lactam antibiotics (table); the activity of clavulanic acid against C pylori confirms the observations of Lambert et al. Neither C pylori nor the ferret GCLO produced detectable β lactamase (Nitrocefin test), and combinations of clavulanic acid and amoxycillin were not synergistic.

Conversely, no appreciable differences between C pylori and the ferret GCLO were found in sensitivity to erythromycin or the bismuth salt or in their relative resistance to sulphathiazole or trimethoprim. C pylori and the ferret GCLO were similarly insensitive to agents which reduce gastric acid production (minimum inhibitory concentration (50%) for cimetidine and ranitidine >2000 mg/l; omeprazole 500–1000 mg/l). On the basis of similarities between the man and the ferret in gastric anatomy and physiology and the isolation of a similar gastric campylobacter from both, Cave et al suggested the ferret as a useful model of gastric campylobacter infection. Our findings on the relative resistance of the ferret campylobacter to certain antibacterial agents would appear to limit the value of this animal model for experimental chemotherapy. Moreover, the question of whether gastric mucosal infection with (or colonisation by) GCLO from the ferret has the potential to progress to peptic ulceration, with similar pathology to C pylori infection in man, remains to be determined.

We thank Miss A Hassan, Division of Communicable Diseases, Clinical Research Centre, Harrow, Middlesex, for providing the clinical isolates of C pylori.

Table Minimum inhibitory concentrations (MIC) (mg/l) of antimicrobial agents for C pylori and ferret gastric campylobacter like organism (GCLO)

<table>
<thead>
<tr>
<th>Agent</th>
<th>MIC range C pylori*</th>
<th>MIC₉₀ C pylori</th>
<th>MIC₉₀ Ferret GCLO</th>
<th>Control strains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin G</td>
<td>0.02 - 0.1</td>
<td>0.05</td>
<td>1.6</td>
<td>Staphylococcus aureus NCTC 6571</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>0.01 - 0.05</td>
<td>0.02</td>
<td>0.8</td>
<td>C jejuni NCTC 1151</td>
</tr>
<tr>
<td>Clavulanic acid</td>
<td>0.4 - 3.2</td>
<td>1.6</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>Cloxacillin</td>
<td>0.2 - 3.2</td>
<td>1.6</td>
<td>25.6</td>
<td></td>
</tr>
<tr>
<td>Temocillin</td>
<td>3.2 - 6.4</td>
<td>6.4</td>
<td>30.0</td>
<td></td>
</tr>
<tr>
<td>Erythromycin</td>
<td>0.02 - 0.05</td>
<td>0.05</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Furazolidone</td>
<td>0.0015 - 0.006</td>
<td>0.006</td>
<td>0.048</td>
<td></td>
</tr>
<tr>
<td>Metronidazole</td>
<td>0.4 - 0.8</td>
<td>1.6</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>Sulphathiazole</td>
<td>128 - 256</td>
<td>256</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>512</td>
<td>512</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>Tripotassium</td>
<td>5 - 10</td>
<td>2.5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Dictrato bismuthate†</td>
<td>10</td>
<td>2.5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

* n = 11 (NCTC 11637, type strain, (Australian isolate) + 10 UK isolates).
† n = 14 (isolates from ferrets of one strain).

References

5. Cave DR, Taylor N, Tuczynski C, Fox M. Campylobacter-like organisms (CLO) from...
Diagnosis of peritonitis

Diagnosis of peritonitis in patients receiving continuous ambulatory peritoneal dialysis (CAPD) is important in terms of patient management and effective chemotherapy. Various methods have been introduced to improve isolation rates such as filtration, pour plates, and broth enrichment culture. 1–4 Peritoneal dialysis effluents (PDE) may contain very small numbers of organisms. 1 It has been suggested that bacteria may reside inside phagocytes in some cases of apparently culture negative peritonitis. 5 To investigate this possibility further we compared the results of PDE cultures before and after cell lysis with saponin.

Diagnostic samples of PDE were obtained from 33 consecutive CAPD patients presenting with peritonitis—that is, a cloudy PDE and one or more of the following: (i) symptoms of peritonitis; (ii) PDE white cell count (>50%) neutrophils; (iii) positive dialysate culture. After centrifugation a Gram stain was performed on the spun deposit which was then divided into two aliquots. The first aliquot was inoculated by placing one drop of the deposit on to aerobic and anaerobic blood agar plates, a McConkey agar plate, and a diagnostic sensitivity test plate for sensitivity testing. To the second aliquot 4 drops of 10% saponin were added and the mixture allowed to stand at room temperature for five minutes. Culture plates were inoculated in an identical manner to that of the first aliquot. Plates were examined for growth after 18 hours of incubation, then reincubated for a further 24 hours. All organisms were identified by standard methods.

The table compares the isolation rates by the two methods. Saponin lysis of the cells in the deposit resulted in the isolation of organisms from three specimens in which the conventional culture was negative. Thus saponin lysis added 9% to the specimen positivity rate (64% to 73%). Secondly, additional organisms were detected in two specimens using saponin, one of these was an anaerobe and of particular importance.

Of the remaining nine specimens, eight (24–2%) were sterile by both methods of culture and 1 (3%) grew diphteroids in identical numbers by both techniques. Key: S epidermidis = Staphylococcus epidermidis; S saprophyticus = Staphylococcus saprophyticus; Ps maltophilia = Pseudomonas maltophilia; B fragilis = Bacteroides fragilis; C freundii = Citrobacter freundii.

<table>
<thead>
<tr>
<th>Category</th>
<th>No (%)</th>
<th>Results of culture techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth on only one medium (MAC) by conventional methods; growth on both media after saponin</td>
<td>6 (18 2)</td>
<td>S epidermidis (3) Bacillus sp Enterobacter cloacae S aureus</td>
</tr>
<tr>
<td>Growth enhanced by saponin treatment</td>
<td>13 (39 4)</td>
<td>S epidermidis (7) S aureus (2) S saprophyticus S faecalis S bovis C freundii</td>
</tr>
<tr>
<td>Growth after saponin; treatment no growth by conventional methods</td>
<td>3 (9 1)</td>
<td>S saprophyticus S aureus Diphtheroids</td>
</tr>
<tr>
<td>Additional organisms after saponin treatment</td>
<td>2 (6 1)</td>
<td>Klebsiella aerogenes Klebsiella aerogenes plus B fragilis Ps maltophilia plus Enterobacter cloacae</td>
</tr>
</tbody>
</table>

References

5 Coccanour B, Fessia S. Improved methods for identification and culture of microorganisms from peritoneal dialysate. Peritoneal Dialysis Bull 1985:5:137. 1267

D LAW R FREEMAN J TAPSON
Department of Microbiology, Freeman Hospital, High Heaton, Newcastle on Tyne NE7 7DN