The procedure described is inexpensive, relatively fast, and increases the isolation rate of anaerobes, most of which are found in ulcers. A study is proposed to evaluate the clinical importance of these findings.

JANET GOODLAND
Public Health Laboratory,
Musgrove Park Hospital,
Taunton, Somerset. TA1 5DB.

Uneventful expectation

We would like to draw attention to the unusual appearance of a bronchial cast that first led us to believe a patient had expectorated a portion of lung during the course of a respiratory arrest, (figure).

A 58 year old man was admitted with acute chest pain and had known chronic obstructive airways and coronary artery disease. Shortly after admission he had a respiratory arrest and during resuscitation a length of reddish brown tissue 14 cm x 1.5 cm x 1 cm was sucked from the back of the throat. It had the consistency and appearance of lung (fig 1a). Microscopical examination showed irregular air spaces with thin walls resembling alveoli (fig 1b). The walls comprised red cells, eosinophils, and acellular eosinophilic strands. To ensure that this was not lung tissue, a reticulin stain was necessary. This confirmed the absence of any permanent structures of the alveolar wall.

We were relieved to realise this was not lung and concluded that this was a bronchial cast "whisked" into its present "pulmonary" form by coughing. It clearly differs from the common descriptions of bronchial casts that show alternating cellular and acellular areas. The former exhibit large numbers of eosinophils, the latter are mostly mucus. Charcot-Leyden crystals and Kurschmann's spirals are also common in the typical cast. Only one area was eventually found on the current case with laminated mucus strands that bore any resemblance to a typical bronchial cast.

SUNDARESAN, AS PRICE,
Department of Pathology,
Northwick Park Hospital,
Watford Road, Harrow, Middlesex

Non-polio enteroviruses and motor neuron disease

There is considerable interest in the possible viral aetiology of various neurological diseases. The recent observation by one of us (SK) of an apparent cluster of cases of motor neuron disease prompted us to examine the possible role of the group B Coxsackievirus (CBV). The putative role of CBV in the post-viral fatigue syndrome is currently being evaluated by us using the μ-antibody capture ELISA technique for the detection of CBV IgM antibody. Detection of this antibody implies recent or persisting infection. It is well established that this CBV ELISA test can cross react with other non-polio enteroviruses, thus extending its diagnostic scope.

We studied sera from 17 clinically defined cases of motor neuron disease (10 men, seven women, aged between 39–87 years) and 11 patients with other neurological disorders (seven men, four women, aged between 29–64 years). All serum specimens were collected between January and March 1986 (table). There was little difference in the number of patients with motor neuron disease giving a CBV IgM positive response compared with the control group. Using the more conventional CBV neutralising antibody assay, however, there was evidence of a higher proportion with raised (≥ 256) antibody titres in patients with motor neuron disease.

In evaluating these data it should be pointed out that CBV was epidemic in the local community during 1985–86; this is reflected by higher background titres in asymptomatic adults assessed by both the CBV IgM and neutralising antibody assays. This may possibly explain the higher titres seen in our cases, but the number of patients studied was small, and the more sensitive CBV IgM assay failed to show a pronounced difference in the two groups studied.

Although the results of this preliminary investigation are inconclusive, we suggest that further epidemiological studies of CBV infection in patients with motor neuron disease are merited. Definitive evidence of the role of any virus in this and other neurological diseases is now feasible using the molecular biological techniques of in situ and Southern blot hybridisation to detect viral nucleic acid sequences in affected neurological tissues.

Table: Results of Coxsackie B tests in patients and controls

<table>
<thead>
<tr>
<th>Group</th>
<th>No (% ) tested</th>
<th>C B IgM positive</th>
<th>C B neutralising antibody titres</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>≥ 512</td>
</tr>
<tr>
<td>Patients</td>
<td>17 (100)</td>
<td>4 (23.5)</td>
<td>5 (29)</td>
</tr>
<tr>
<td>Controls*</td>
<td>11 (100)</td>
<td>2 (18)</td>
<td>1 (10)</td>
</tr>
</tbody>
</table>

*Neutral titres not available in one control as serum finished.