Letters to the Editor


Laboratory diagnosis of Branhamella catarrhalis

Ahmad et al have highlighted the problem of distinguishing Branhamella catarrhalis from the Neisseria genus1 but their identification scheme of up to nine characterisation tests may not find favour in a busy diagnostic laboratory.

To rely on the failure of B catarrhalis to grow either anaerobically or on selective media is to place much emphasis on a negative test. Furthermore, it is recognised that B catarrhalis may grow on modified Thayer-Martin (MTM) medium, and may fail to grow on nutrient agar incubated at 22°C.2 The colonial appearance of pigmentation of B catarrhalis is likely to be a more useful characteristic than its positive superoxol test. N perflora, N pharyngis, and N mucosa—all superoxol negative—are pigmented as are the common superoxol positive non-pathogenic Neisseria.3 The demonstration of the ability of B catarrhalis to liberate high concentrations of butyric acid from tributyrin is a useful diagnostic test4; it can be carried out using commercial discs impregnated with tributyrin and phenol red (A/S Rosco). A positive reaction is indicated by a yellow colour after six to 12 hours' incubation at 37°C. If the indicator remains red after 24 hours the test is negative. B caviae, B ovis, and B cuniculi produce moderate amounts of butyric acid but are not encountered unless the specimen is of animal origin. All Neisseria strains produce negative results.

The colonial appearance of B catarrhalis will distinguish it from the pathogenic neisseriae N meningitidis and N gonorrhoeae. The following minimal criteria will differentiate B catarrhalis from non-pathogenic Neisseria species: lack of pigmentation, failure to produce acid from glucose, nitrate reduction, tributyrin and Dnase activity.

R P D COOKE
Department of Medical Microbiology,
Medical School,
University of Manchester,
Manchester M13 9PT

References


Dr Ahmad comments:
Dr Cooke has perhaps missed the point of our paper. We set out to discover the simplest way of accurately identifying B catarrhalis and differentiating it from other Neisseria species. Of course, there are many other tests that can be applied to achieve the same purpose. The main tests used in our study, in addition to usual microscopic and carbohydrate fermentation tests, were superoxol and Dnase activity. The growth on various commonly used culture media and under different conditions is recommended for difficult strains not identifiable by the routine techniques.

The colonial and microscopic appearance of B catarrhalis is very familiar to all experienced workers in respiratory bacteriology. One would not rely on this criterion alone. Similarly, pigmentation and even rough and smooth nature of colonies in the family Neisseriaceae is variable. Tributyrin hydrolysis is a valuable test, but recently been made commercially available, and could be used if so desired as an additional test. Nitrate reduction is yet another available test but, when using Dnase and superoxol tests, we found both to be unnecessary.

Vero toxin producing E coli in haemorrhagic colitis

Walker, Upson, and Warren tested 80 faecal samples from patients with bloody diarrhoea or microscopic evidence of red blood cells and found four with Escherichia coli 0157 and 22 with Campylobacter, Salmonella, or Shigella.1 We have also looked for Vero toxin producing E coli in patients with haemorrhagic colitis. Freshly passed stools from 40 patients recently admitted to the Northwick Park Lister Infectious Disease Unit were quantitatively cultured on both selective and non-selective agar. Ten colonies of each type of coliform were subcultured for identification and further testing, including subculture from both the higher and lower dilutions inoculated. Fresh rectal biopsy tissue from 17 patients was homogenised and cultured in a similar way.

Fourteen patients yielded campylobacters, salmonella, or Shigella; one specimen contained Entamoeba histolytica trophozoites. No E coli were isolated from seven patients. E coli from the remaining 18 patients were sorbitol fermentors. Six biopsy cultures yielded sorbitol positive E coli and no biopsy yielded organisms not also found in the stool. These E coli strains were inoculated into synecase/glucose broth and tested for Vero toxin production.2 A Vero toxin positive control strain obtained from Dr Sylvia Scotland (Colindale) and a Vero toxin positive strain isolated from a patient with haemolytic uraemic syndrome by Dr SP Borriello (CRC) were tested in tandem. Both positive control strains were positive on assay in Vero cells, but none of the E coli strains from patients with haemorrhagic colitis was.

Bloody diarrhoea without routinely recognised microbial or viral pathogens is a common presentation to an infectious disease unit.3 Vero toxin producing E coli are clearly responsible for some cases of haemorrhagic colitis in the United Kingdom. Our results, which agree with those of Walker et al, show that these organisms do not appear to be responsible for the common, sporadic, form of haemorrhagic colitis seen in the community.

E LARSON
Clinical Research Centre,
Division of Communicable Diseases,
Watford Road, Harrow,
Middlesex HA1 3UJ

References


Book review


This multi-authored book examines the ques-