How specific is the rapid urease test for diagnosing *Campylobacter pylori*?

We read with interest, the letter to the editor by Vaira et al. We describe our experience with the rapid urease test, which differs from that reported by Vaira et al and from those reported earlier.

Three pieces of antral biopsy specimen were taken from 53 patients with dyspepsia. Two pieces were transported to the microbiology laboratory, one piece for Gram staining and another for culture in the Campylobacter medium; a third piece was immersed in CLO-gel, as described by Marshall et al. Results were read after 20 minutes, three hours, and 24 hours. Twelve (20.69%) cases grew *Campylobacter pylori* (table).

The sensitivity of the rapid urease test has been shown to vary from 59–97%, but our study shows a sensitivity of 100%. Unlike studies showing 100% specificity, this study showed a specificity of 95.7% at 20 minutes, 93.5% at three hours, and 80.4% at 24 hours. Unlike other studies there were no false negative results with the test, but there was a false positive rate of 4.4% at 20 minutes, 6.5% at three hours, and 19.6% at 24 hours.

Vaira et al concluded that a positive *C. pylori* (CP) test before 20 minutes of incubation is strong evidence of *C. pylori* infection. To substantiate the authors' observation, it would be important to know the sensitivity, specificity, false positive and false negative rates at 20 minutes, three hours, and 24 hours of the CP test compared with those of the 2% RUT and CLO-tests. Results of the CLO-test were read at 20 minutes, 90 minutes, and 24 hours; results of the 2% RUT were read at three hours, four hours, and six hours; results of the CP test were read at 15 minutes, 20 minutes, and two hours. We feel that it would have been better if the results were read at the same time intervals with these three tests.

<table>
<thead>
<tr>
<th>Culture</th>
<th>Gram staining</th>
<th>Rapid urease test at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20 minutes</td>
</tr>
<tr>
<td>Positive</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>Negative</td>
<td>46</td>
<td>44</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>Specificity</td>
<td>100%</td>
<td>95.6%</td>
</tr>
<tr>
<td>False positive</td>
<td>4%</td>
<td>4.35%</td>
</tr>
<tr>
<td>False negative</td>
<td>16-67%</td>
<td>0</td>
</tr>
</tbody>
</table>

Demonstration of aluminium on bone using different staining techniques and spectrophotometry

We were interested to see the paper of Ellis et al. To our knowledge, it is the first time that anyone has attempted to validate the technique we originally described in 1985 for showing the presence of aluminium within bone, and we note with some pleasure that they have been able to confirm our results.

We have now examined more than 1800 biopsy specimens using the solochrome azurine technique and have had an opportunity on many occasions to compare the stain distribution with that perceived by energy and wavelength dispersive electron probe analysis, secondary ion mass spectrometry, and lasermicroprobe mass analysis, and believe we can resolve two of the anomalies described by Ellis et al.

The "false" positivity that they describe is not false but real. Atomic absorption spectrophotometry (AAS) by its nature gives a measure of aluminium expressed as a proportion of total dried weight of bone. Localised deposits of aluminium, as frequently occur after treatment of aluminium related renal osteodystrophy (AIROD), would be "diluted" out by AAS analysis giving a low mean aluminium concentration, whereas in truth, the local concentration may be relatively high and well within the concentration range detected by solochrome azurine. Thus by comparison with AAS, solochrome azurine may appear to be reacting with bone containing only low aluminium concentrations. The obverse may also apply. Aluminium may be deposited diffusely within bone but with local concentrations too low to be detected by solochrome azurine. We have found this to be particularly true in patients with a moderately decreased glomerular filtration rate in regions like ours where the ionic aluminium content of tap water is relatively high. This group of patients gradually accumulate aluminium in bone but the concentration in the extracellular fluid is
never high enough to inhibit bone cell function significantly.

The "unrecognised substance that inhibits the aluminium technique" is much less mysterious than it first appears. The aluminium technique is undertaken at acid pH. Even in the short time that the stain solution is applied to the tissue, the acid conditions initiate decalcification with the result that the local concentrations of calcium and phosphate at bone surfaces (including the cut surface of the trabeculae and cortices) are high. It has been known since 1954 that high phosphate ion concentrations inhibit the aluminium staining reaction and this is almost certainly the cause of the observed failure of staining.

AJ FREEMONT
J DENTON
Department of Rheumatology,
University of Manchester,
Stopford Building, Oxford Road,
Manchester M13 9PT

References

Fungus ball of the urinary tract

I read with interest the account by Morton et al of urinary bladder fungus ball in a man of 71. As they comment, there is scant mention of this condition, few cases having been reported, but thrust of the urinary bladder was reviewed by Winner and Hurley and, more recently, candida pyelonephritis has been reviewed by Odds, who observed that diabetes is the most common single underlying condition. Hurley and Winner published an illustrated account of the pathogenesis of experimentally induced renal candidosis, with a brief review of cases in man affecting the upper renal tract. Hydronephrosis with formation of fungus ball in the pelvis of the ureter is a feature of this rare disease. The fungus ball described in the bladder by Morton et al may well have had its origin in fungal pyelonephritis.

ROSLINDE HURLEY
Department of Microbiology
Royal Postgraduate Medical School
Institute of Obstetrics and Gynaecology
Queen Charlotte's & Chelsea Hospitals
London W6 8RF

Some new titles

The receipt of books is acknowledged, and this listing must be regarded as sufficient return for the courtesy of the sender. Books that appear to be of particular interest will be reviewed as space permits.


Matters arising

European Association for Haematopathology
University of Würzburg
7–11 October 1989

Topics to be covered at this meeting will include:
Lymphoma and lymphoproliferation associated with viral infection; antigenic receptors in malignant lymphomas; pathology of the thymus; aplastic anaemia; recent developments in haematopathology.

For further information contact: EAHF, c/o Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, D-8700 Würzburg, West Germany

XIVth European Symposium on Hormones and Cell Regulation

Call for abstracts for poster presentation
Organiser: Professor JE DUMONT, Institute of Interdisciplinary Research, Université Libre de Bruxelles, Faculty of Medicine, 808 route de Lennik, 1070 Brussels, Belgium