Current concerns in haematology 2: Classification of acute leukaemia

B Bain, D Catovsky

Introduction

For the past century the classification of leukaemia has been predominantly clinical and morphological, supplemented in recent decades by the application of cytochemical techniques. During the past five to 10 years major advances in our knowledge of the nature of leukaemia consequent on the application of the techniques of immunology, cytogenetics, and molecular genetics, have taken place. Such new techniques have not only advanced knowledge but are now being applied in the diagnosis of individual patients. Information gained has led haematologists to review clinical and haematological features and to reinterpret them in the light of immunological and cytogenetic characteristics of the clone of leukaemic cells. Within the major categories of acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL) many new entities have been recognised which differ in their biological features, including their prognoses. The recognition of such entities is important in using new forms of treatment which may benefit patients with leukaemias which can not be cured with current protocols.

The basis of the classification of acute leukaemia remains morphology and cytochemistry. Cases of acute leukaemia are most often classified according to predominant cell type as proposed by the FAB cooperative group. Information on immunophenotype and cytogenetic characteristics can be integrated with information derived from morphology and cytochemistry as is proposed in the MIC (Morphologic, Immunologic, and Cytogenetic) classifications of AML, ALL, and the myelodysplastic syndromes (MDS). An alternative approach to the morphological classification of acute leukaemia that emphasises the number of lineages involved and the degree of maturation of leukaemic cells has been proposed.

Morphology and cytochemistry

The examination of both peripheral blood and bone marrow films is necessary for the diagnosis and classification of acute leukaemia. High quality staining of well spread films is of critical importance. The most useful cytochemical stains are either Sudan black B (SBB) or myeloperoxidase (MPO), together with a non-specific esterase stain such as α-naphthyl acetate esterase (ANAE). SBB is at least as sensitive as MPO in detecting myeloid differentiation and has the advantage that, unlike MPO, the reaction remains positive when there has been delay in fixing the films. It has been suggested that SBB is less specific than MPO because positive reactions have been reported in ALL but we have not yet seen a positive SBB reaction in a well characterised case of ALL. The chloroacetate esterase reaction can also be used to identify myeloid cells. It is usually less sensitive than either MPO or SBB in detecting myeloid differentiation but can be useful, when combined with ANAE in a double esterase stain, for characterising leukaemia with both granulocytic and monocytic differentiation (AML M4). In identifying the monocye lineage ANAE has a practical advantage over naphthol-AS acetate (NASA) or naphthol-ASD acetate (NASD) esterase: it gives reactions which are weak or negative with the granulocytic lineages and the test does not therefore have to be performed with and without sodium fluoride to convey specificity. The periodic acid-Schiff (PAS) reaction is useful for supporting the diagnosis of ALL but its importance has declined as immunological markers have become more important for this purpose. PAS-block positivity, which is characteristic of ALL, correlates with the immunological phenotype, being more common in B-lineage cases. The presence of both vacuolated blasts and PAS positivity also correlates with reactivity for the common ALL antigen (CD10). PAS positivity can be seen in addition in monoblasts in AML M5 and in erythroid blasts in AML M6; in these lineages the positive blocks appear on a background of diffuse or finely granular positivity in contrast to the clear background of ALL. Blasts of basophil lineage may also have strong PAS positivity. Like PAS staining, the acid phosphatase reaction has declined in importance with the availability of immunological markers. A strong focal acid phosphatase activity (or a strong focal ANAE activity), however, remains a useful indicator of T-lineage ALL. It should be noted, however, that a localised acid phosphatase and ANAE reaction is also a feature of rare forms of AML, M6, and M7.

Some prognostic information can be drawn from the morphology and cytochemistry of acute leukaemia. Among cases of ALL those with L3 morphology have a significantly worse prognosis, and in some studies L2 has shown a worse outcome than L1. In AML some differences in prognosis are seen among the different FAB categories. Cases of M5, M6, and M7 generally have a worse prognosis than those of M1–M4, and AML M0 (see...
Classification of acute leukaemia

A poor prognosis is also associated with the presence of trilineage myelodysplasia and with PAS positive erythroblasts. Conversely, evidence of maturation of leukaemic cells, such as the presence of granules or Auer rods, sudanophilia and positive reactions for non-specific esterase, is associated with a more favourable prognosis.

Immunological markers

Immunological techniques can be used to identify cytoplasmic and surface membrane antigens of leukaemic cells. For convenience and to increase sensitivity, an indirect two or three layer technique is usually used with the binding of the primary antibody (usually a monoclonal antibody of mouse hybridoma origin) being recognised by the application of a second and possibly third labelled antibody. The techniques most applicable to haematology are indirect immunofluorescence (IF), indirect immunoperoxidase (IP), and indirect immunoalkaline phosphatase (IAP) or the related indirect alkaline phosphatase-anti-alkaline phosphatase (APAAP) technique. Techniques such as IF applied to living cells in suspension allow surface antigens to be detected. Techniques applied to fixed cells in blood or bone marrow films, or cytospin preparations permit the detection of surface antigens, cytoplasmic antigens such as μ chain or myeloperoxidase, and nuclear antigens such as terminal deoxynucleotidyl transferase (TdT). All the above methods are applicable to fixed cells. Indirect immunofluorescence on cells in suspension has the advantage of speed and, if a microtitre plate is used, economical use of reagents. There is an increasing tendency to use flow cytometers rather than fluorescence microscopy to read the results of IF. This permits the simultaneous detection of two or three antigens by the use of reagents directly labelled with different fluorochromes. Indirect immunofluorescence has the disadvantage that permanent preparations are not available, and the morphology of cells giving positive reactions cannot be easily determined. Conversely, techniques using fixed cells allow the morphological detail of positive cells to be recognised and provide permanent preparations. Because some antigens are expressed in the cytoplasm before being expressed on the cell surface, techniques with fixed cells can be more sensitive in detecting evidence of lineage commitment than techniques using living cells in suspension; this is relevant when looking for expression of CD3 (T-lineage), CD22 (B-lineage), or CD13 (myeloid lineage).

Immunological markers are important in the diagnosis of acute leukaemia for many reasons. They allow: (i) a presumptive diagnosis of ALL to be confirmed by demonstration of markers of either T or B lineage; (ii) some cases which give negative reactions with SBB, MPO, and non-specific esterase to be identified as myeloid; (iii) inappropriate antigen expression and bilineage and biphenotypic leukaemia to be identified; and (iv) information which may be of prognostic importance, certainly in ALL, and possibly in AML to be gained.

The correct assignment of cases to the two major categories of ALL or AML is of practical importance as the drugs most likely to be effective in ALL differ from those most effective in AML, and as prophylaxis against central nervous system disease is essential in ALL and is generally not indicated in AML. Eighty to ninety per cent of cases of acute leukaemia can be correctly categorised as ALL or AML using morphology and cytochemistry alone. The addition of immunological markers allows roughly 98–99% of cases to be assigned correctly. Immunological markers are not essential in cases which can otherwise be positively identified as myeloid, but are indicated in those cases in which morphology and cytochemistry suggest ALL or do not give any clear evidence of lineage commitment. Most such cases will turn out to be ALL but a considerable minority are AML with the cells being either megakaryoblasts (AML M7), myeloblasts with minimal cytoplasmic maturation (AML M0), or blasts with the phenotype of an erythroid progenitor cell. The designation M0 (M zero) is useful for cases of AML which have fewer than 3% of cells positive with SBB or an MPO stain but which can be shown by more sensitive techniques, such as electron microscopy, to show myeloid differentiation. Ultrastructural morphology and cytochemistry can identify M7 and M0 AML and with an early erythroid phenotype, but immunological typing is more widely used and more easily applicable. AML M7 can be identified with monoclonal antibodies that detect platelet glycoprotein IIIa (CD61), platelet glycoproteins IIb or IIb/IIIa (CD41), and platelet glycoproteins IX and Ib (CD42). M0 AML can be identified with monoclonal antibodies of the CD13 and CD33 clusters. AML with an early erythroid phenotype can be identified with monoclonal antibodies against carbonic anhydrase. Erythroid cells can also be detected with monoclonal antibodies directed at the Gerbich blood group antigen (anti-Gero) or specific for glycophorin A. Also positive with erythroid cells but less specific are anti-transferrin antibodies (CD71) and antiplatelet glycoprotein IV (CD36), the latter being positive with early erythroid cells as well as with the megakaryocyte lineage.

In ALL immunological markers give information of relevance to prognosis. The worst prognosis is seen in the small minority of cases showing a mature B phenotype (surface membrane immunoglobulin positive); many such cases can also be identified morphologically because they fall into the FAB L3 category, but some B-ALL have L2 morphology and therefore can only be recognised by immunological techniques. Among other B-lineage cases a pre-B phenotype (cytoplasmic μ chain) was found in two studies to have a worse prognosis than other non-B, non-T lineage ALL, but this was not observed in another study comparing the prognosis of pre-B ALL and common ALL.
Ph-positive chronic myeloid leukaemia (CML) in which lymphoid, myeloid, and mixed transformations occur but hybrid cells such as basophil-mast cell hybrids can also be observed.

If large numbers of markers are applied to leukaemic cells an increasingly large proportion of patients are found to express markers of more than one lineage. The above mechanisms by which this may occur may differ in their clinical importance and it therefore seems desirable to distinguish between them by considering which markers—morphological, cytological, immunological, genetic or molecular—can be accepted as positive evidence of commitment to a lineage, and which are more likely to be lineage associated or the result of aberrant gene expression. Markers which are closely associated with the normal function of a lineage are generally accepted as firm evidence of differentiation to that lineage; such markers include the synthesis of immunoglobulin or cytoplasmic μ chain (B lineage), expression of CD3 and the T-cell receptor (α/β or γδ) (T lineage), and synthesis of myeloperoxidase and formation of peroxidase positive granules or Auer rods (granulocyte lineage). Other markers are strongly associated with a particular lineage but are not exclusive to it—for example, CD7 is characteristic of the T-lineage but is also expressed in some cases of AML.

When a case of acute leukaemia has two populations of cells expressing different markers the terms biphenotypic or mixed lineage leukaemia are used whereas the term biphenotypic leukaemia is now used when a single population of cells expresses the markers of two lineages. This distinction may be, to some extent, artificial as two populations of leukaemic cells differing in morphology, immunophenotype, or both, may nevertheless belong to a single clone. Examples of this phenomenon may be seen in patients with mixed lineage blastic crisis of Ph positive CML and in patients with the t(4;11) translocation who may have either a mixed lineage or biphenotypic leukaemia. The situation in which a biphenotypic or mixed leukaemia is actually bicalonial is probably less common and could arise either by coincidence or because mutagenic influences on haemopoietic stem cells have led to two independent leukaemogenic events or because immune surveillance is defective. Biphenotypic leukaemia necessarily occurs at a single point in time, but in biphenotypic leukaemia the two populations of leukaemic cells may be present simultaneously (synchronous) or consecutively (metachronous). The latter is also designated lineage switch.

The recognition of biphenotypic leukaemia is important for both practical and theoretical reasons. There are implications for treatment of the individual patient because treatment directed at a single lineage may be ineffective. The recognition of such cases also has the potential to increase our understanding of the nature of leukaemia. It is important, therefore, that cases are not assigned to these categories on the basis of single markers which

Bilineage and biphenotypic leukaemias

The widespread application of immunological and molecular genetics techniques has led to the identification of many cases of acute leukaemia in which the leukaemic cells express markers of two lineages, either on a single population of cells or on two apparently separate populations. If factitious results such as those due to binding of antibodies to Fc receptors are excluded several explanations remain. (i) A marker may initially seem to be lineage specific when in fact it is lineage associated, but is expressed also in another lineage, albeit less frequently and sometimes less strongly. (ii) A leukaemic cell which seems to express inappropriate markers may correctly reproduce the phenotype of a normal counterpart which is rare and has therefore not been recognised. (iii) Malignant transformation may have occurred in a multipotent stem cell so that differentiation into cells of more than one lineage occurs. (iv) A leukaemic cell may show aberrant expression of one or more genes leading to cellular characteristics inappropriate to the lineage and not present on normal counterparts. A combination of the third and fourth mechanisms may occur with transformation of a multipotent stem cell being associated with abnormal differentiation so that hybrid cells are produced. Such a complex mechanism may be observed in blast crisis of
are lineage associated rather than lineage specific, and it is also desirable, although more difficult, to distinguish between aberrant gene expression and lineage commitment. Del Vecchio suggested that, using a panel of 10 well characterised monoclonal antibodies, the 18% of cases which expressed only a single "inappropriate" antigen should be regarded as showing ectopic expression of an antigen and only the 5-5% of cases which expressed two "inappropriate" antigens should be classified as biphenotypic.32 Mirro and Kitchingham proposed a scheme which is much more complex but also more satisfactory because it weights various characteristics with their strength of association with a given lineage.33 The expression of cytoplasmic μ chain and the T-cell receptor (TCR) is thus sufficient to identify a cell as lymphoid, but the expression of TdT or CD7 alone is not. Thorous investigation of cases with the application of clearly defined criteria will allow bilineage and biphenotypic leukaemias to be recognised and their clinical importance to be assessed. Whether expression of a single or even more than one "inappropriate" marker has implications for prognosis is not yet clear. Conflicting evidence has emerged from different studies with regard to the prognostic importance of TdT expression in AML and myeloid antigen expression in ALL.34-38

Cytogenetics
Cytogenetic studies in acute leukaemia yield important information from the point of view of aetiology, pathogenesis, prognosis and, potentially, treatment. Within the acute myeloid leukaemias abnormalities of chromosomes 5 and 7 (+5, 5q-, −7, 7q-) are associated with secondary leukaemia following exposure to cytotoxic chemotherapy and possibly also following exposure to environmental toxins such as benzene and various solvents and other chemicals. These abnormalities, together with others including t(6;9), inv (3), and complex karyotypic abnormalities, are associated with trilineage myelodysplasia, leukaemia arising in a multipotent stem cell, and poor prognosis. Conversely, certain chromosomal abnormalities are associated with de novo leukaemia, with a better prognosis, and with leukaemia which probably arises in a committed stem cell. Among these are t(15;17), inv (16), and probably t(8;21). t(15;17) is associated not only with acute hypergranular promyelocytic leukaemia (M3) but also with the variant form, M3V; the demonstration of t(15;17) is useful in confirming M3V as this diagnosis can be difficult on morphological grounds. The karyotype associated with the most favourable prognosis is inv (16)34 which in most cases is found classified as M4E0 (acute myelomonocytic leukaemia with eosinophilia). An intermediate prognosis is associated with M2/t(8;21) and M3/t(15;17) leukaemias.34,35 There is more likelihood of achieving a cure with chemotherapy in patients with a favourable karyotype so that cytogenetic data are relevant in assessing whether a patient with AML should be offered bone marrow transplantation.

In ALL certain translocations which are also associated with Burkitt’s lymphoma—t(8;14), t(2;8) and t(8;22)—are associated with a mature B phenotype, L3 morphology, and with a prognosis which has been poor in the past but which is improving with current intensive treatment protocols.39 Recently ALL with this phenotype has been recognised in AIDS. Other unfavourable karyotypes include hypo-diploidy and pseudodiploidy, particularly t(9;22) with formation of the Philadelphia chromosome, t(1;19), and t(4;11). Conversely, hyperdiploidy with more than 55 chromosomes is associated with the most favourable prognosis.

As for unfavourable immunophenotypes, the poor prognostic importance of certain chromosomal abnormalities seems to have lessened with the wider use of intensive treatment38 but cytogenetic data still remain relevant in choice of chemotherapy and in determining the appropriateness and timing of bone marrow transplantation.

Molecular genetics
Techniques of DNA analysis have shown the mechanisms operating in the pathogenesis of leukaemia, particularly in Ph-positive acute leukaemia and in Burkitt’s related translocations. Such analysis has also proved a powerful tool in showing clonality and has been used, for example, to show that a lineage switch has occurred rather than a secondary leukaemia related to treatment.39 Molecular genetic analysis has proved less useful than had been hoped in showing lineage commitment. Although rearrangement of the TCR β, γ, and δ genes occurs during T cell ontogeny, it also occurs in some B-lineage ALL and even in some cases of AML. Similarly, rearrangement of the immunoglobulin (Ig) heavy chain gene occurs in B cell ontogeny but also in some T-ALL and AML. Rearrangement of κ and λ genes does, however, seem to be specific for the B lineage. Transcription of non-rearranged immunoglobulin μ chain and TCR β genes sometimes occurs; these are truncated transcripts which may not be lineage specific.40

In the myeloid lineages detection of MPO mRNA by hybridisation with cDNA has been suggested as a technique for showing myeloid differentiation. Some investigators have obtained positive results only in AML,41 but one group also obtained positive results in ALL42 so that the role of the technique cannot be regarded as established.

At this stage the techniques of molecular genetics are a powerful research tool but they have not yet affected patient management.

Relapse of leukaemia and secondary leukaemia
The thorough investigation of leukaemia in relapse and of suspected secondary leukaemia is of some importance in the management of individual patients, but it is of even more
importance in understanding leukaemogenesis and in determining treatment strategies for future patients. Apparent relapse should be reassessed by morphology, cytchemistry, cytogenticics and, if possible, DNA analysis in order to distinguish between relapse, with or without lineage switch, and a secondary leukaemia induced by treatment. The implication of relapse including lineage switch is that initial treatment was ineffective and may have selected for a subclone or a particular lineage, whereas the implication of a secondary leukaemia is that initial treatment has damaged DNA of residual normal stem cells and has been leukaemogenic.

When relapse of leukaemia occurs the morphological phenotype may show some changes. For example, L1 ALL may relapse as L2 ALL or M2, or M4 AML as M1 AML. Some change in immunological phenotype may also occur. Cytogenetic analysis usually shows an abnormal karyotype related to that present at diagnosis. Clonal evolution is common. A side-line with further karyotypic abnormality may have replaced the stem-line or may coexist with it.

When relapse is associated with a lineage switch the morphological and immunological phenotype have changed but any cytogenetic abnormality present is likely to be the same as or related to that which was present originally. Molecular genetic analysis of TCR β, γ, and δ and IgJH genes shows the same rearrangement and confirms that the two leukaemias belong to the one clone as in the case described by Scott et al. Lineage switch may occur rapidly during induction chemotherapy in which case it is likely to indicate selection by chemotherapy. This phenomenon has been seen particularly in patients with the t(4;11) translocation and is an indication for change in treatment. Lineage switch may also occur at the first or subsequent relapse. Late lineage switch has commonly been from T lineage ALL to AML.

When a secondary leukaemia occurs as a result of chemotherapy administered for the primary malignancy the characteristic finding is of an AML which is often difficult to categorise morphologically with associated trilineage myelodysplasia and complex karyotypes and abnormalities of chromosomes 5 and 7 being common. A group of 13 children with ALL was recently described in whom a recurrence of leukaemia seemed to be secondary AML rather than a relapse, but in whom the cytogenetic features differed from those usually seen in secondary AML. The original ALL was either T- or B-lineage but with T-lineage overrepresented. In nine of the ten in whom cytogenetic analysis was performed a karyotypic abnormality was present which was not related to that present at diagnosis. In no case was there loss of material from chromosome 5 or 7 but in eight of the nine cases an abnormality with a breakpoint at 11q23 had been acquired. Further investigation is needed to assess the clinical importance of these findings as no DNA analysis was available and as abnormalities with an 11q23 breakpoint, including t(4;11), have been associated with leukaemia arising in a multipotent stem cell—both biphenotypic leukaemia and bilineage leukaemia, synchronous and metachronous.

The investigation of apparent relapse of leukaemia after bone marrow transplantation is of particular importance. The necessity for caution in interpretation is highlighted by a recent report of a case in which bone marrow from a male was transplanted into a female. Relapse in donor cells was suspected when 20 mitoses in a bone marrow obtained at relapse were XY. More detailed analysis using molecular genetics techniques showed that although all the cells in mitosis were of donor origin the relapse was in recipient cells which showed the same rearranged JH gene as at diagnosis.

Conclusions
With our present state of knowledge the optimal management of individual patients with acute leukaemia requires that all cases be studied by morphology and cytchemistry and by immunological techniques. Ideally all cases should also have cytogenetic analysis. Other techniques are at present important in the advancement of knowledge but have not yet had a major impact on patient management. More detailed studies of individual patients at specialised centres with preservation of cells or of DNA for future study will be important in yielding more information on the clinical importance of the expression of various markers, the prevalence and relevance of bilineage and multiphenotypic leukaemias and, above all, mechanisms of leukaemogenesis and of disease evolution and refractoriness to treatment.

References
12. Schiffer CA, Lee EJ, Tomiyasu T, Wiernik PH, Testa JR.
Classification of acute leukaemia

