Histogenesis of ovarian malignant mixed mesodermal tumours

T J Clarke

Abstract
The histogenesis of ovarian malignant mixed mesodermal tumours, which includes the concept of metaplastic carcinoma, is controversial. Four such tumours were examined for evidence of metaplastic transition from carcinoma to sarcoma using morphology and reticulin stains. Consecutive sections were stained immunohistochemically using cytokeratin and vimentin to determine whether cells at the interface between carcinoma and sarcoma expressed both cytokeratin and vimentin. There was no evidence of morphological, architectural, or immunohistochemical transitions from carcinoma to sarcoma in the four tumours studied. This suggests that ovarian malignant mixed mesodermal tumours are not metaplastic carcinomas but are composed of histogenetically different elements.

Ovarian malignant mixed mesodermal tumours are rare neoplasms that arise typically in nulliparous, postmenopausal women. Recently they have been referred to as “mixed Mullerian tumours of high grade malignancy” or as “carcinosarcomas”. The prognosis is bleak and most patients die within 12 months of presentation.

Histogenetically and cytotypically there was no evidence of a metaplastic transition from carcinoma to sarcoma in any of the tumours studied.

Histopathology
The tumours were all large at initial presentation, ranging from 15 to 22 cm in maximum diameter. Three were typical, solid, and cystic ovarian malignant mixed mesodermal tumours composed of a haphazard mixture of adenocarcinoma and undifferentiated sarcoma (fig 1), with heterologous elements of rhabdomyosarcoma in one and chondrosarcoma in another. The tumour in the fourth case was a unicocular serous cystadenocarcinoma containing several discrete intramural sarcomatous nodules up to 2.5 cm in diameter and a 5.5 cm in diameter fibroma. At necropsy a separate metastatic spread of carcinoma and sarcoma was found; para-aortic lymph nodes contained metastatic squamous cell carcinoma and the liver contained deposits of sarcoma including rhabdomyosarcoma. There was no evidence of endometriosis or teratomatous differentiation in any of the four tumours.

Multiple sections of each tumour were examined for evidence of morphological transition between carcinoma and sarcoma and none was found. Reticulin stains showed a crisp
Figure 1 Ovarian malignant mixed mesodermal tumour composed of adenocarcinoma and sarcoma. (Haematoxylin and eosin.)

demarcation in cytoarchitecture between the periglandular pattern of adenocarcinoma and the pericellular pattern of sarcoma which was invariable in each tumour (fig 2). Immunohistochemical techniques showed carcinomatous elements positive for cytokeratin set in undifferentiated sarcoma positive for vimentin (fig 3). The intramural sarcomatous nodules in the serous cystadenocarcinoma were vimentin positive and entirely separate from the cyto-keratin positive, malignant epithelial lining.

Coexpression of cytokeratin and vimentin within the same cell, determined by staining serial sections alternately, was not found in any of the four tumours.

The rhabdomyoblasts in one primary tumour (fig 4) and in the hepatic metastases of another did not show cross-striations with PTAH but they did contain myoglobin. In two cases PAS positive, diastase resistant eosinophilic hyaline droplets of varying size (5-50 μm in diameter) were found mainly in the spindle

Figure 2 Contrast in reticulin patterns between adenocarcinoma and sarcoma. (Ramnér's reticulin.)

Figure 3 Consecutive sections stained with anti-cytokeratin (3a) and anti-vimentin (3b). (Indirect immunoperoxidase.)
Histogenesis of ovarian malignant mixed mesodermal tumours

Figure 4 Rhabdomyoblasts stained with anti-myoglobin (Indirect immunoperoxidase.)

cell sarcomatous component. They stained deep blue with PTAH but did not show secondary fluorescence in sections stained with haematoxylin and eosin or contain α-1-antitrypsin.

Discussion

Three tumours corresponded with the typical descriptions of ovarian malignant mixed mesodermal tumours, being composed of a disorganised mixture of carcinoma and sarcoma with a predominance of adenocarcinoma of serous type. In one case, however, the tumour was a "forme fruste" ovarian malignant mixed mesodermal tumour from which the separate metastatic spread of carcinoma and sarcoma nevertheless fulfilled the necessary diagnostic criterion. The presence of rhabdomyosarcoma in metastases alone has been noted before. Ovarian endometriosis has occasionally been described in association with ovarian malignant mixed mesodermal tumours but none was found in this series. The eosinophilic hyaline droplets were tinctorially similar to those in previous reports but did not show secondary fluorescence or contain α-1-antitrypsin.

It has been suggested that ovarian malignant mixed mesodermal tumours are metastatic carcinomas, and morphological transitions have been described. The intraperitoneal and lymphatic spread of ovarian malignant mixed mesodermal tumours is consistent with this mode of spread of a carcinoma, but the metastases are frequently sarcomatous. Masuda grew a carcinoma cell line derived from an ovarian malignant mixed mesodermal tumour in low cell density tissue culture and found that there was a loss of epithelial characteristics. This phenomenon has been described, however, in tissue culture using other epithelial cell lines. It is due to decreased cell to cell contact and is, therefore, not proof of metaplasia. When examined by electron microscopy, two ovarian malignant mixed mesodermal tumours showed no evidence of transitional cell forms or discontinuity in the basal lamina separating carcinoma from sarcoma. Electron microscopy was not used in this series but the difference in reticulin patterns between the two components supports the previously reported ultrastructural findings. The biphasic pattern of cytokeratin and vimentin expression has been described before but immunohistochemical transitions between the two elements were not investigated.

The light, electron microscopic, and immunohistochemical findings suggest that ovarian malignant mixed mesodermal tumours are not metaplastic carcinomas—that is, tumours in which the sarcomatous component derives from the carcinomatous. Meyer classified carcinomas into collision, combination, and composition types. There is no evidence to suggest that ovarian malignant mixed mesodermal tumours are collision tumours formed following coalescence of two separate tumours; moreover, ovarian carcinomas are common and sarcomas are rare. In a combination tumour the carcinomas is thought to arise from a precursor stem cell (Ahnzelle) which differentiates along two divergent pathways. There is evidence from tissue culture experiments using cells from malignant mixed mesodermal tumours to support and refute this; but, again, extrapolation from tissue culture work is fraught with difficulties. In a composition tumour there is a synchronous malignant change in adjacent epithelium and stroma. This change was evident in the forme fruste ovarian malignant mixed mesodermal tumour in this series. The other three tumours may have been either of combination or composition in type.

In conclusion, examination of the general morphology, cytorearchitecture, and immunohistochemistry of four ovarian malignant mixed mesodermal tumours produced no evidence to suggest that such neoplasms are metaplastic carcinomas, and it is suggested that carcinomas at other sites be reexamined in the manner described in this study.

This paper is based on work presented at the Association of Clinical Pathologists' Junior Members Research Award in London on October 14, 1988.

I thank Mrs Carol Stoddard for technical assistance. Mrs G Marshall for typing the manuscript, and Professor P P Anthony for constructive criticism.

