Preferential localisation of human lymphocytes bearing \(\gamma\delta \) T cell receptors to the red pulp of the spleen

D Bordessoule, P Gaulard, D Y Mason

Abstract

About 4% of human T cells carry antigen receptor composed of \(\gamma \) and \(\delta \) chains (rather than \(\alpha \) and \(\beta \) chains). Double immunoenzymatic staining of frozen sections of 14 samples of human spleen showed that \(\gamma\delta \) bearing T cells were preferentially localised in the red pulp of this organ where on average they accounted for 17% of all T cells. There was no correlation between the number of \(\gamma\delta \) T cells and the diagnosis, with the exception of a case of malaria in which an unusually high number (40%) of T cells were of this type. The \(\gamma\delta \) bearing T cells were scattered randomly through the red pulp, and double staining combined with a marker of splenic sinusoids (CD36) showed that almost all lie outside the sinusoids within the cords of the red pulp. It is suggested that the double immunoenzymatic technique could be used for further studies of the prevalence of \(\gamma\delta \) bearing T cells in lymphocytic infiltrates.

The T cell receptor (TCR) for antigen is a heterodimeric molecule which exists in two alternative forms. In 90–99% of T cells the receptor is composed of \(\beta \) and \(\beta \) subunits. Cells expressing this type of TCR recognise peptide antigens in association with self-histocompatibility antigens. The remaining small minority of T cells expresses an alternative form of the receptor comprising \(\gamma \) and \(\delta \) subunits. In contrast to the major \(\alpha\beta \)-T cell population, which has a central role in recognising foreign antigens and thereby initiating both T and B cell immune responses, the function of the cell population expressing \(\gamma\delta \) is less clearly defined, because the rarity of these cells has made it difficult to define their antigen recognition repertoire. Studies in this area have yielded differing results, including suggestions that \(\gamma\delta \)-T cells respond to mycobacterial antigens, leishmaniasis, tetanus toxoid, immunoglobulin and histocompatibility antigens. One approach to the assessment of the function of \(\gamma\delta \) T cells is to examine their distribution in different tissues by immunohistological techniques. In mice and birds this type of study has shown that most intraepithelial gut \(\gamma\delta \) lymphocytes and dendritic epithelial cells in the skin are of this type. In a study of human tissues, however, we and others found no evidence of preferential localisation to these sites, but we did note that the red pulp of the spleen seemed to contain more of these cells than other organs. In this paper we report a more detailed study of this phenomenon based on the analysis of 14 human spleens.

Methods

Frozen samples of human spleen were obtained from the histopathology departments of the authors' hospitals. The spleens had all been removed surgically and the diagnoses are shown in the table. Samples were snap frozen in liquid nitrogen and 5 \(\mu \)m cryostat sections cut. After air drying the sections were fixed in acetone for 10 minutes and then stored in foil as described previously. Slides were warmed to room temperature and unwrapped before staining.

The monoclonal antibodies used in this study were directed against CD3, CD8 (both from Dakopatts), and CD36 (antibody IVC7, kindly provided by Dr A von dem Borne) and against TCR \(\delta \) and \(\beta \) chains (reagents TCR \(\delta \) and \(\beta F1 \) respectively, both kindly provided by Dr M Brenner). Anti-mouse Ig antibodies, both unconjugated and coupled to peroxidase or alkaline phosphatase, were obtained from Dakopatts a/s or from Dr K-J Pluzek. Alkaline phosphatase-anti-alkaline phosphatase (APAAP) immune complexes were prepared in one of the authors' laboratories. Reagents were diluted in TRIS-buffered saline (TBS) (0.5 M TRIS HCl, pH 7.6, diluted 1/10 with 0.15 M saline) containing 10% human serum, and TBS was also used for the washing steps.

Single labelling of antigens was carried out by the APAAP immunoalkaline phosphatase

Table: Prevalence of T cells bearing \(\gamma\delta \) TCR in splenic red pulp

<table>
<thead>
<tr>
<th>Case No</th>
<th>Diagnosis</th>
<th>(\gamma\delta)-bearing cells/T cells (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reactive</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>Idiopathic thrombocytopenic purpura</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Spherocytosis</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>Normal</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>Portal hypertension</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Normal</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>Idiopathic thrombocytopenic purpura</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>Idiopathic thrombocytopenic purpura</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>Normal</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>Normal</td>
<td>13.5</td>
</tr>
<tr>
<td>11</td>
<td>Malaria</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>Idiopathic thrombocytopenic purpura</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>Normal</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>Normal</td>
<td>16</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>Range</td>
<td></td>
<td>6–40</td>
</tr>
</tbody>
</table>

Department of Haematology, University Hospital, Limoges, France
D Bordessoule
Department of Pathological Anatomy, CHU Henri Mondor, Créteil, France
P Gaulard
Department of Haematology, John Radcliffe Hospital, Oxford OX3 9DU
D Y Mason

Correspondence to:
Dr D Y Mason
Accepted for publication 4 January 1990
Fast Red) in brown antibody haematoxylin counterstain.

Figure 1 Double labelling of a frozen section of normal spleen with anti-TCR β antibody in brown (by immunoperoxidase) and anti-TCR δ antibody in red (APAAP-Fast Red) haematoxylin counterstain.

462

technique. Double labelling was performed using an immunoperoxidase procedure followed by an immunoalkaline phosphatase method. Frozen tissue sections were incubated successively with monoclonal antibody βFI (1/1000), followed by peroxidase conjugated goat anti-mouse immunoglobulin (1/40). Both incubations were for 30 minutes. The peroxidase reaction was then developed using a substrate containing diaminobenzidine (0.6 mg/ml), H2O2 (0.01%), and nickel chloride (0.2 mg/ml) for five to eight minutes. Sections were then incubated with monoclonal antibody TCRδ1 (1/250) or monoclonal anti-CD3 antibody (undiluted), and the APAAP immunoalkaline phosphatase technique was then performed as detailed previously, using either a Fast Blue or a Fast Red substrate. When the latter substrate was used sections were counterstained in haematoxylin before mounting.

To confirm the ability of the double staining technique to detect all CD3 positive cells sections from several spleens were stained by the same double labelling method using a mixture of the anti-β and anti-δ antibodies for the first reagent (developed by immunoperoxidase), followed by monoclonal anti-CD3 antibody (developed by APAAP). The same double labelling method, using monoclonal antibodies to CD8 or CD36 (undiluted and diluted 1/1000, respectively) for the first step followed by anti-β antibody, was used to show the distribution of γδ-bearing cells in relation to red pulp sinusoids.

For quantitative analysis, at least three sections of each sample were stained and three to five high power fields were counted on each slide. For each spleen the ratio of γδ to γβ cells was assessed on sections stained with the anti-δ and anti-β reagents, and also on sections stained with anti-β and anti-CD3.

Results

A total of 14 spleen samples were examined in this study. These were chosen from 16 unselected specimens on the basis of satisfactory morphological preservation and the presence of moderate numbers of CD3 positive T cells in the red pulp. Two samples in which only occasional T cells were present in the red pulp were excluded on the basis that the prevalence of a minor subpopulation of T cells would be too low for evaluation.

γδ positive cells were present in the red pulp of all samples and comprised on average 17% of all T cells (fig 1). The values for individual spleens lay in the range 6% to 22%, with the
was recognised, immunohistological studies of the mouse suggested that this cell population was present at high numbers in gut epithelium. More recently Augustin et al have provided evidence that 8–20% of resident pulmonary lymphocytes in the mouse are also γδ-bearing cells. It has therefore been hypothesised that γδ cells might have a role in recognising foreign antigens at these sites. This distribution pattern observed in the mouse is not, however, found in human tissues. An extensive study of the distribution of γδ cells in man showed no tendency for γδ T cells to be more common in any tissue other than in peripheral blood, except that in some spleen samples (out of seven adult and fetal spleen samples studied) these cells seemed to be more common in the red pulp and in marginal zones than in T cell areas, although no figures were given. More recently Bucy et al, by single staining of five samples using the same monoclonal anti-δ antibody as in our study, reported that γδ-bearing cells are present, “almost exclusively in splenic sinusoids”, although again no figures are given for this.

The group had previously shown that in chickens the equivalent of γδ T cells are also preferentially localised in the splenic red pulp where they constitute 30% of all splenic T cells. In this species, however, a higher proportion of circulating T cells (about 20%) belong to this population than in man.

In this study we have confirmed the observation of Bucy et al that γδ-bearing T cells localise preferentially to the red pulp. Unlike previous authors, we estimated the prevalence of γδ-bearing cells among the total T cell population, an assessment which was greatly facilitated by the use of double immunoenzymatic techniques. This showed that γδ-bearing T cells account, in most subjects, for about 20–22% of all T cells. In comparison, the average percentage in normal peripheral blood has previously been shown to be only 4% and there is hence a four- to five-fold enrichment of γδ-bearing T cells in the splenic red pulp.

We did not observe increased numbers of γδ T cells in the marginal zones of the spleen as reported by Groh et al and it was clear from double staining that the γδ T cells were found in splenic cords and not “almost exclusively in splenic sinusoids”, as stated by Bucy et al. An additional novel observation in the present study was that when spleen sections were stained initially with a mixture of anti-β and anti-δ antibodies and then with the CD3 antibody, no cells were detected which reacted only with the latter antibody, arguing against the existence in man of a third T cell receptor population, as has been reported in chickens by Chen et al.

Finally, one may speculate on the clinical importance of the preferential localisation of γδ cells in the red pulp of the spleen. It has been suggested that T cells bearing the γδ receptor represent an early stage in the phylogenic and ontogenic evolution of the immune system, and that they may be responsible for defence against highly conserved antigens. Their localisation in the splenic red pulp may
therefore reflect the early development of this tissue as part of the immune system, before the appearance of organised lymphoid structures, and the high proportion of γδ T cells in case 11, the patient who had malaria, may be related to their role in eliminating infectious organisms.

We are grateful to Margaret Jones for expert technical assistance. This work was supported by a grant from the Ligue Nationale de la Recherche contre le Cancer, France and by the Leukaemia Research Fund, Great Britain.