paracortex and small germinal centres. This was from a patient with systemic vasculitis, a high erythrocyte sedimentation rate, but a low rheumatoid factor titre at the time of biopsy.

We have not yet investigated the possibility that the numbers of CD5 positive B cells are increased in our rheumatoid nodes, but the findings in the case described support our view that rheumatoid lymphadenopathy is likely to be a systemic part of the disease process. A role for the CD5 B cell positive cell population in autoimmune diseases has been suggested, based on studies of the Ly-1 B cells in murine models of autoimmune disease, because their ability to produce autoantibodies which express cross-reactive idiotypes (CRI), encoded by unmutated Ig variable region germ line genes.1 We have since found (unpublished observations) that increased numbers of plasma cells containing such CRI are associated with rheumatoid factor activity in rheumatoid nodules.2 It will be interesting to see if surface CRI-bearing B lymphocytes in frozen sections coexpress CD5. We have shown that such CRI are highly expressed by CD5 positive B cells in fetal liver and cord blood at a clonal level (unpublished observations).

Guidelines on oral anticoagulation: second edition

As a consultant haematologist who no longer takes anticoagulant clinics I read with interest the revised guidelines on oral anticoagulation.1 Probably the guidelines do represent an advance in that they attempt to standardise and simplify advice on desired INR ratios. It is a pity, however, that they still have to be based on a mixture of fact, fiction, and subjectivity. Even in 1990, so much anticoagulant practice is not based on the results of good, well structured clinical trials.

It is necessary to express a contrary view to the statement that patients taking oral anticoagulants when discharged from hospital should normally be referred to consultant haematologists for the control of outpatient treatment. Given the increasing clinical, laboratory, and managerial commitments of a consultant haematologist, anticoagulant control should assume a low priority. In my own experience control of short and long term anticoagulation can be adequately and safely done by general practitioners after a short, simple education programme.

Where specific problems of anticoagulation arise these are referred for consultant opinion and action. In such a system the patient benefits in that he or she remains clearly under the supervision of his or her general practitioner who is the person supervising all other treatment. The general practitioner is thus in the strongest position to advise the prescribing specialist as to when and if anticoagulant treatment may have become inappropriate or present an undue hazard in any one patient.

It is usually argued that haematologists should be involved in anticoagulant control because "the haematologist does it better". Doubtless, minute precision of INR control may be improved but it is also likely that any other person trained exclusively to take anticoagulant clinics end up as a thoroughly unsatisfactory professional experience. This is because they deliberately set out only to take responsibility for anticoagulation and not other clinical problems, such limited responsibility often frustrates the patient and other groups of doctors. If haematologists should be the people running anticoagulation it would be better for them to have sufficient resources to have total specialist control of all such patients and fully establish policies regarding duration of anticoagulation, indications, etc.

Surely it is time to take a step forward and either actively demythologise anticoagulant treatment and encourage general practitioners to take responsibility for anticoagulant control, with appropriate availability of support and help from consultant haematologists, or aim for services to become fully equipped and resourced to offer a comprehensive anticoagulation service and assume a much greater degree of patient responsibility.

AG SMITH
Department of Haematology, Royal South Hants Hospital, Graham Road, Southampton SO9 4PE

Dr Davidson comments: I have read Alastair Smith’s letter with interest and must say it is because of the concerns he expressed that the British Society for Haematology, through the British Committee for Standardization in Haematology and its Haemostasis and Thrombosis Task Force, felt it necessary to issue guidelines on oral anticoagulation in an attempt to improve standards of clinical practice.

Yes, clinical practice can be improved. The recommendations are based on available scientific data, plus a consensus of United Kingdom practice.

Beware of anticoagulant control becoming a "low priority" and "a thoroughly unsatisfactory professional experience" for a consultant haematologist—not very reassuring to the 0-25 million plus patients receiving this treatment in the United Kingdom.

Rather, "aim for haematology services becoming fully equipped and resourced to offer a comprehensive anticoagulant service and assume much greater degrees of patient responsibility".

I do not think we are really at odds with Alastair Smith. I am sure he wishes to provide these patients with a high standard of service. That is what the guidelines are all about. Maybe he needs to persuade his general manager to provide the necessary resources—the guidelines will help in this respect.

Examination of faeces for bacterial pathogens

We wish to draw your attention to a simple error in the ACP Broadsheet "Examination of faeces for Bacterial Pathogens".1 In the section dealing with isolation of Staphylococcus aureus it is stated that colonies of this organism will appear pink on mannitol salt agar. We suspect that most laboratories will use phenol red as a pH indicator—those using the OXoid formulation are obliged to do so as it is present in the medium as supplied. Mannitol-fermenting colonies are yellow on phenol red-containing media.

J WIGGINS
IAN HARRISON
Department of Medical Microbiology, St Bartholomew’s Hospital, London EC1

Hypercalcaemia in lymphoma

I was interested in the letter of Drs Ellis, Beck, and Mondal about a case of hypercalcaemia in lymphoma.1 There seem to have been a few errors and omissions, however, and I wonder whether these can be clarified—namely, (1) the serum calcium in particular and perhaps also the serum phosphate and albumin concentrations were not given; (2) in paragraph 4 the red blood cell count was given as 4 x 1011/l; should this have been "white cell count"? If so, what was the differential? (3) In view of the above errors, was this a case report of a Hodgkin’s or a non-Hodgkin’s lymphoma as the title of the letter could be taken to imply Hodgkin’s disease presenting with hypercalcaemia?

J LUCKIT
Department of Haematology, Mayday University Hospital, Mayday Road, Thornton Heath, Surrey CR7 7YE

Dr Ellis comments: I hope the following notes will clarify the points raised by Dr Luckit.
Prognostic index for breast carcinoma: a 22% improvement in the prediction of outcome?

There is a significant arithmetical error in Baak et al’s data, leading them to conclude that, compared with using the presence of lymph node metastases as a classifying variable, their size prediction was more effective in 22% of instances to predict the actual prognosis of their patients. The actual difference is 6.7%.

Baak's prognostic index predicts accurately the outcome in 139 out of 195 patients (71.3%) of cases; lymph node status alone predicts accurately in 126 of 195 (64.6%) of cases. The difference between the effectiveness of the two methods is thus 6.7%. The discrepancy of 6.7% vs 22% is explained as follows:

<table>
<thead>
<tr>
<th>Baak's prognostic index</th>
<th>Lymph node status</th>
<th>Distant recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>< 0.6</td>
<td>8</td>
<td>91</td>
</tr>
<tr>
<td>> 0.6</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>112</td>
</tr>
</tbody>
</table>

21 + 7 = 28 cases where prediction by prognostic index is confirmed and prediction by lymph node status is contradicted.

Differential marking of surgical excision planes

Armstrong et al have described a novel system for the differential marking of excision planes in screened breast lesions that is aesthetically pleasing, although somewhat laborious. They routinely use a simple procedure which allows surgical excision margins to be identified microscopically. Each block of tissue taken is roughly either a sector or a rectangle, such that only one edge is irregular with an incomplete coating of red cells (the surgical margin) and the other edges are straight and lack coating (the pathologist's margins). The site of each block is recorded at cut-up according to the orientation of the specimen indicated by the surgeon. This simple procedure facilitates identification of surgical margins without using more sophisticated techniques.

Surgical Pathology of the Thyroid

The book is divided into three: non-neoplastic conditions in seven chapters; thyroid tumours in nine; and special diagnostic techniques in three. In addition to detailed discussion of papillary and follicular lesions, medullary and anaplastic carcinoma and lymphomas, the material is specially organised for ease of reference. The chapter headings therefore include granulomas in the thyroid, lymphocytes in the thyroid, fibrosis,