Platelet satellitism and α granule proteins

C Christopoulos, C Mattoo

Abstract
Blood smears from a patient with severe generalised arteriopathy and an occluded synthetic femoropopliteal graft showed the phenomenon of EDTA dependent adherence of platelets to neutrophils (platelet satellitism). Immunoenzymatic staining with a monoclonal antibody to thrombospondin showed that adherence to neutrophils exclusively involved platelets that stained strongly positive for thrombospondin, while negative or weakly positive platelets showed no tendency to adhere. There was no increase in platelet surface immunoglobulins. This suggests a possible role for thrombospondin or some other cytoadhesive platelet α granule protein in mediating the adherence of platelets to neutrophils in cases of satellitism.

Adherence of platelets to neutrophils in a rosette formation, known as platelet satellitism, is a rare in vitro phenomenon typically seen in EDTA anticoagulated blood. It is not consistently related to any clinical entity but can be the cause of spurious thrombocytopenia. The exact mechanism of this phenomenon is unknown but its transferrability, at least in some cases, to normal blood by patients’ serum1,2 and a report of increased surface IgG in the adhering platelets3 suggest that immunoglobulins have a central role. Our findings in the following case of satellitism point toward an alternative link that might be mediating the adherence of platelets to neutrophils in this setting.

Case report
A 69 year old woman was admitted for replacement of an occluded synthetic femoropopliteal arterial graft. Apart from severe peripheral arteriopathy she also had ischaemic heart disease, having had a triple by-pass graft two years previously. Aspirin had been discontinued three days before admission. A routine preoperative blood count (EDTA anticoagulant) showed a normal platelet count but the white cell differential

was rejected by the Coulter analyzer. A blood film showed extensive rosetting of platelets around most neutrophils without platelet clumping. Eosinophils, monocytes, and lymphocytes were not involved. Examination of a citrated blood sample showed many platelet clumps but no satellitism.

Measurement of surface immunoglobulin concentrations of platelets isolated from the EDTA sample was performed using a modification of the flow cytometric method described by Rosenfeld et al.®; thoroughly washed platelets from the EDTA sample were incubated with a fluorescein-labelled polyvalent (anti-IgG, IgM, IgA) goat-anti-human antibody. After further washing, analysis on a Coulter EPICS-Profile flow cytometer showed the mean platelet fluorescence to be within our pre-established normal range.

As part of a study assessing platelet thrombospondin (TSP) content in patients with conditions associated with increased in vivo platelet activation, peripheral blood smears from this patient were stained with a novel murine monoclonal anti-thrombospondin antibody (FT7) produced by one of us.® We used a modification of the three layer peroxidase-antiperoxidase (PAP) immunoenzymatic labelling technique described by Mason et al.® Briefly, freshly made blood smears fixed in 0.3% H2O2 in methanol for 10 minutes were incubated with FT7 or a non-platelet bindable control monoclonal followed by an excess of polyclonal rabbit-anti-mouse "bridging" antibody and then monoclonal PAP. All the incubations were of one hour's duration with intervening washes. Finally, the smears were treated for 10 minutes with diaminobenzidine/H2O2 substrate for colour development and were counterstained in Mayer's haematoxylin. Intracellular as well as surface antigens are detected with this method, and, when stained with FT7, most platelets from normal controls gave a uniformly strong positive reaction, as expected from a protein which is found at high concentrations in the α granules; in a case of α granule deficiency (grey platelet syndrome) most platelets were negative or only weakly positive.

Surprisingly, in the case of our patient with platelet satellitism we observed that only platelets that stained strongly positive for TSP had formed rosettes around neutrophils (figure). Non-rosetting platelets were either weakly positive or negative—that is, these platelets were deficient in α granule TSP which, in normal controls, accounts for the bulk of platelet TSP positivity.

Discussion

The primary event in the phenomenon of platelet satellitism seems to be a change induced by EDTA in the plasma membrane of some platelets or neutrophils. This probably results in the formation of molecular bridges that cross-link platelets with neutrophils. Jungi et al.® have shown that stimulation of platelets with low dose thrombin induces the expression of surface determinants interacting strongly with monocytes and neutrophils. TSP is a multifunctional α granule protein involved in cell to cell and cell to matrix interactions, and it has been shown that the adhesion of activated platelets to monocytes is mediated by TSP via an interaction with glycoprotein IV on the surface of both cells.® Other workers have shown that PDGFM (platelet activation dependent granule-external membrane protein), another α granule adhesive protein, mediates binding of activated platelets to neutrophils and monocytes.®

Boughton et al.® have presented evidence suggesting that in vivo platelet activation with aggregation or release of granule contents can be followed by disaggregation and recirculation of "exhausted" platelets.® It is tempting to speculate that this could account for the presence of platelets deficient in α granule TSP in our case of platelet satellitism, in view of the clinical history suggestive of in vivo platelet activation. These "exhausted" (TSP deficient) platelets showed no tendency to adhere to neutrophils, which suggests that either TSP itself or some other α granule cytoadhesive protein was essential for satellitism to occur in this patient.